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Preface

The purpose of this book is to stimulate a much needed debate on math-
ematics education reform. We do not claim that we present anything near
the whole truth, and that there are not many other points of view. We thus
invite to debate and urge other people to express their views. As scientists
we believe that it is our duty to present our own standpoints and conclu-
sions as clearly as possible, to open for scrutiny and discussion, rather than
ambiguous politically correct views, which are difficult to question.

This book may be viewed as an introduction to our mathematics edu-
cation reform project Body&Soul based on a synthesis of Body (compu-
tational mathematics) and Soul (analytical mathematics). We do make a
case for computational mathematics, which is the new world of mathemat-
ics opened by the computer, now waiting to enter mathematics education.
But we do also propose a synthesis of this new world, with the kernel being
computational algorithms, and the traditional world of analytical math-
ematics, with analytical formulas as the kernel. In fact, algorithms are
expressed using analytical formulas before being translated into computer
code, and good analytical formulas are necessary for understanding and
insight.

Reviewers of the book have remarked that what we tell about the sit-
uation in Sweden is hard to believe, and should better be omitted. Yet,
what we tell is indeed true, and following the idea that true observations
of individual facts often may point to a universal truth, while speculations
without observations often lead nowhere, we have decided to tell (a bit of)
the story. And we believe that after all Sweden is not that special, maybe
even typical.



viii Preface

We hope the book can be read (and understood) by many. We hope the
reader will find that the book is partly serious, partly not so serious, and
that our prime objective is to be constructive and contribute something
new, not to be critical of traditional views. Finally, we hope the reader will
accept that the book is a sketch (not a treatise), which was written quickly,
and can also be read quickly.

Goteborg in April 2004

Johan Hoffman, Claes Johnson and Anders Logg
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Part 1

Perspectives






1

Introduction

...the resolution of revolutions is the selection by conflict within
the scientific community of the fittest way to practice further sci-
ence. . . (Thomas Kuhn, The Structure of Scientific Revolutions)

1.1 The Mathematics Delegation and its Main
Task

The Mathematics Delegation was created by the Minister of Education
Thomas Ostros at a Swedish government cabinet meeting on 23rd January
2003 with the following main task:

o Analyse the current situation in terms of the teaching of mathematics
in Sweden and assess the need for changing current syllabuses and
other steering documents.

The report of the delegation is to be delivered on May 28 2004. The dele-
gation involves more than 100 people in several different committees, but
contains only one professor of mathematics, and in particular no expertise
of computational mathematics.
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1.2 Crisis and Change of Paradigm, or Not?

In public presentations of the work of the Mathematics Delegation by its
chairman, the following two statements have been expressed as a basis for
the analysis:

e Al: There is no crisis in the mathematics education today.

e A2: There is no change of paradigm in mathematics education now
going on because of the computer.

Our motivation to write this book comes from our conviction that

e B1: There is a crisis in the mathematics education today.

e B2: There is a change of paradigm in mathematics education now
going on because of the computer.

We base our conviction on our work as experts in the field of computational
mathematics. In particular, we believe that the present crisis is caused by
an ongoing change of paradigm.

To decide whether A1-2 or B1-2 is true (they cannot be true both) is
important: If the analysis of the delegation is based on A1-2, and indeed
B1-2 is true and not A1-2, it would seem to be a high risk that the main
task of the delegation cannot be met. And this task is very important,
since mathematics education touches so many in the educational system,
and has such an important role in our society.

We encourage the reader to seek to take a standpoint. In this book, we
give our arguments in favor of B1-2 in a form which hopefully is readable
to many.

1.3 The Body&Soul Project

Of course, the problems are not solved by just identifying B1-2 as more
true than A1-2; if B1-2 indeed describe the realities, it remains to come up
with a reformed mathematics program reflecting the change of paradigm
and which may help to resolve the crisis. We briefly present our work in
this direction within our Body&Soul mathematics education reform project
(see www.phi.chalmers.se/bodysoul/).

The Body&Soul project has grown out of a 30 year activity of the senior
author in international research with several influential articles and books.
This book may be viewed as a kind of summary of this work, accomplished
with the help of several younger coworkers now carrying the project further.
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1.4 Same Questions in All Countries

Mathematics education is of course not a Swedish affair; the issues are
similar in all countries, and in each country the different points of view with
A1-2 and B1-2 as clearly expressed alternatives, have their supporters.

The book is thus directed to a large audience also outside Sweden, al-
though the direct stimuli to write the book as indicated came from the
Mathematics Delegation in Sweden.

If not already in existence, there may soon be a Mathematics Delegation
in many countries.

1.5 Why We Wrote this Book

In our contacts with the Mathematics Delegation and also elsewhere, we
have met attitudes indicating that a common ground for discussion on
issues of mathematics education is largely lacking. It appears that today the
worlds of pure mathematics, computational mathematics and mathematics
didactics are largely separated with little interaction. The result is that
there are today no clear answers to the basic questions which are generally
accepted and acknowledged.

The motivation to write this book comes from this confusion. We hope
to be able to exhibit some key aspects of mathematics education today and
present some constructive elements to help create a more fruitful climate
for debate and reform. Of course, we feel that this is not an easy task.

We hope this book will be readable for a general audience without expert
knowledge of mathematics.

To help, we use a minimum of mathematical language in the first part
of the book, and try to express basic ideas and aspects in “just” words.

The second part is a bit more technical mathematical and contains some
formulas. It may be used as a test of our claim that some mathematics is
both understandable and useful.






2
What? How? For Whom? Why?

I admit that each and every thing remains in its state until there is
reason for change. (Leibniz)

The mathematician’s pattern’s, like those of the painter’s or the
poet’s, must be beautiful, the ideas, like the colours or the words,
must fit together in a harmonious way. There is no permanent place
in the world for ugly mathematics. (Hardy)

2.1 Mathematics and the Computer

Mathematics is an important part of our culture and has a central role in
education from elementary pre-school, through primary, secondary schools
and high schools to many university programs.

The basic questions of mathematics education are: What to teach? How
to teach? Whom to teach? and Why to teach? The answers to these ques-
tions are changing over time, as mathematics as a science and our entire
society is changing.

Education in general, and in particular education in Mathematics and
Science, is supposed to have a scientific basis. A teacher claiming in class
today that 2 + 2 = 5, or that the Earth is flat, or denying the existence of
electrons, bacteria or the genetic code, would certainly face severe difficul-
ties.

The scientific basis of the standard mathematics education presented
today was formed during the 19th century, well before the computer was
invented starting in the mid 20th century. Therefore the current answers to
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the basic questions formulated above reflect a view of mathematics without
the computer.

Today the computer is changing our lives and our society. The purpose
of this book is twofold: First, we want give evidence that the computer is
changing also mathematics as a science in a profound way, and thus new
answers to the basic questions of mathematics education have to be given.
Second, we want to propose new answers to these questions. We do not
claim that our answers are the only possible, but we do claim that the old
answers are no longer functional.

The purpose of this book is to stimulate a much needed debate on math-
ematics education. We seek to reach a wide public of teachers and students
of mathematics on all levels, and we therefore seek to present some basic
ideas as simply and clearly as possible, with a minimum of mathematical
notation.

2.2 Pure and Computational Mathematics

The terms pure mathematics and applied mathematics are used to identify
different areas of mathematics as a science, with different focus. In applied
mathematics the main topics of investigation would come from areas such
as mechanics and physics, while in pure mathematics one could pursue
mathematical questions without any coupling to applications.

The distinction between pure and applied mathematics is quite recent
and gradually developed during the 20th century. All the great mathe-
maticians like Leibniz, Euler, Gauss, Cauchy, Poincare and Hilbert were
generalists combining work in both pure and applied mathematics as well
as mechanics and physics and other areas.

Even today, there is no clear distinction between pure and applied mathe-
matics; a mathematical technique once developed within pure mathematics
may later find applications and thus become a part of applied mathemat-
ics. Conversely, many questions within pure mathematics may be viewed
as ultimately originating from applications.

Another distinction is now developing: mathematics without computer
and mathematics with computer. Applied mathematics today can largely
be described as mathematics with computer, or computational mathemat-
ics. Most of the activity of pure mathematics today can correspondingly
be described as mathematics without computer, although computers have
been used to solve some problems posed within pure mathematics. One ex-
ample is the famous 4-color problem asking for a mathematical proof that
4 colors are enough to color any map so that neighboring countries do not
get the same color.
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For the discussion below, we make the distinction between pure math-
ematics (essentially mathematics without computer), and computational
mathematics (mathematics with computer).

The Information Society and Computational Mathematics

In fact, computational mathematics forms the basis of our new information
society with digital word, sound and image in new forms of wirtual real-
ity within science, medicine, economy, education and entertainment. The
scanner at the hospital giving detailed images of the interior of your body,
the weather forecast, the flight simulator, the animated movie, the robot in
the car factory, all use different forms of computational mathematics. We
will return to some of these topics below.

Fermat’s Last Theorem

In pure mathematics a question may receive attention just because it rep-
resents an intellectual challenge, not because it has a scientific relevance
as a question of some importance to mankind. The famous mathemati-
cian G. Hardy (1877-1947) expressed this attitude very clearly in his book
“A Mathematician’s Apology”, although the title indicates some doubts
about public acceptance. The prime example of this form is the proof of
the famous Fermat’s Last Theorem in number theory, which was the most
famous open problem in pure mathematics for 300 hundred years until An-
drew Wiles completed his 130 page proof in 1994 after 8 years of heroic
lonely constant struggle. For this achievement Wiles effectively received a
Fields Medal in 1998, the Nobel Prize of Mathematics, at the International
Congress of Mathematicians in Berlin 1998, although technically the Prize
was awarded in the form of a Special Tribute connected to the Fields Medal
awards (because Wiles had passed the limit of 40 years of age to receive
the medal).

Fermat’s Last Theorem states that there are no integers x, y and z which
satisfy the equation z™ + y™ = 2", where n is an integer larger than 2. It
was stated in the notes of Fermat (1601-1665) in the margin of a copy of
Arithmetica by Diofantes of Alexandria (around 250 AD). Fermat himself
indicated a proof for n = 4 and Euler developed a similar proof for n = 3.
The French Academy of Science offered in 1853 its big prize for a full proof
and drew contributions from famous mathematicians like Cauchy, but none
of the submitted proofs at the dead-line 1857 was correct (and none after
that until Wiles proof in 1994). The great mathematician Gauss (1777—
1855), called the king of mathematics, decided not to participate, because
he viewed the problem to be of little interest. Gauss believed in a synthesis
of pure and applied mathematics, with mathematics being the queen of
science.
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The form of Fermat’s Last Theorem makes it particularly difficult to
prove, since it concerns non-existence of integers x,y and z and an integer
n > 2 such that " + y™ = 2. The proof has to go by contradiction, by
proving that the assumption of existence of a solution leads to a contradic-
tion. It took Wiles 130 pages to construct a contradiction, in a proof which
can be followed in detail by only a few true experts.

Fermat’s Last Theorem may seem appealing to a pure mathematician
because it is (very) easy to state, but (very) hard to prove. Thus, it can be
posed to a large audience, but the secret of the solution is kept to a small
group of specialists, as in the Pythagorean society built on number theory.

Gauss or Hardy?

But what is the scientific meaning of a proof of Fermat’s Last Theorem?
Some mathematicians may advocate that (apart from aesthetics) it is not
the result itself that is of interest, but rather the methods developed to
give a proof. Gauss would probably not be too convinced by this type
of argument, unless some striking application was presented, while Hardy
would be.

The incredible interest and attention that Wiles proof did draw within
trend-setting circles of mathematics, shows that the point of view of Hardy,
as opposed to that of Gauss, today is dominating large parts of the scene
of mathematics, but the criticism of Gauss may still be relevant. We will
come back to this topic several times below, because of its influence on
contemporary mathematics education, on all levels.

What and How to Compute, and Why?

In general, because the tools are so different, the questions addressed in
mathematics without computer and computational mathematics could be
expected to often be different. We give below an example in the form of
the Clay Institute Millennium Prize Problem concerning the Navier—Stokes
equations. In computational mathematics the pertinent question would be:
What quantity of interest of a solution to the Navier—Stokes equations
can be computed to what tolerance to what cost? The prize problem for-
mulated by a pure mathematician instead asks for a proof of existence,
uniqueness and smoothness of a solution. However, there is quite a bit of
evidence indicating that the Navier—Stokes equations may have turbulent
solutions, which hardly can be viewed as smooth pointwise uniquely defined
solutions, because turbulent solutions appear to be partly chaotic. Thus, a
pure mathematician would seem to be willing to consider a question with-
out a clear scientific relevance from applications point of view, if it offers
a respectable intellectual challenge. On the other hand, in computational
mathematics one may more likely focus on questions of relevance to some
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application. This example illustrates different attitudes in pure and com-
putational mathematics, but of course does not give a complete picture.
Some pure mathematics clearly concerns questions of scientific interest in
applications, others maybe not.

The Formalists and the Constructivists

To sum up: Today there is a dividing line between pure mathematics and
computational mathematics. We will below come back to this split, which
originated with the birth of the computer in the 1930s in a great clash
between the formalists (mathematics without computer) and the construc-
tivists (mathematics with computer).

2.3 The Body&Soul Reform Project

Our own answers to the basic questions are presented in our mathematics
education reform program, which we refer to as the Body&Soul project
presented at www.phi.chalmers.se/bodysoul/.

Body&Soul contains books (Applied Mathematics: Body&Soul, Vol I-
III, Springer 2003, Vol IV- to appear), software and educational material
and builds on a modern synthesis of Body (computation) and Soul (mathe-
matical analysis). Body&Soul presents a synthesis of analytical mathemat-
ics and computational mathematics, where analytical mathematics is used
to capture basic laws of science in mathematical notation (mathematical
modeling) and to investigate qualitative aspects of such laws, and compu-
tational mathematics is needed for simulation and quantitative prediction.
One way of describing analytical mathematics is to say that it is the math-
ematics performed with pen and paper using symbols, while computational
mathematics is the mathematics performed using a computer. Analytical
mathematics is often viewed as pure mathematics, although much of tra-
ditional pre-computer applied mathematics was performed using symbolic
computation.

Body&Soul offers a basis for studies in science and engineering and also
for further studies in mathematics, and includes modern tools of compu-
tational mathematics. The goal of Body&Soul is to present mathematics
which is both understandable and useful. Body&Soul is a unique project
in scope and content and is attracting quickly increasing interest.

In Appendix we reproduce the preface to the Body&Soul books. We also
reproduce some sample chapters from different volumes below.

Different initiatives to reform mathematics education have been made
during the last 20 years, in particular in the US under the name of Reform
Calculus. Body&Soul may be viewed as a new brand of Reform Calculus
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with particular emphasis on a synthesis of computational and analytical
mathematics. We give more substance to this aspect below.

2.4 Difficulties of Learning

Mathematics is perceived as a difficult subject by most people and feelings
of insufficiency are very common, among both laymen and professionals.
This is not strange. mathematics is difficult and demanding, just like clas-
sical music or athletics may be very difficult and demanding, which may
create a lot of negative feelings for students pushed to perform. There is
no way to eliminate all the difficulties met in these areas, except by triv-
ialization. Following Finstein, one should always try to make Science and
education based on Science as simple as possible, but not simpler.

In music and athletics the way out in our days is clear: the student who
does not want to spend years on practicing inventions by Bach on the
piano, or to become a master of high-jump, does not have to do so, but can
choose some alternative activity. In mathematics this option is not available
for anyone in elementary education, and not even an arts student at an
American college may get away without a calculus course, not to speak of
the engineering student who will have to pass several mathematics courses.

Mathematics education is thus compulsory for large groups of students,
and since mathematics is difficult, for students on all levels, problems are
bound to arise. These problems, apparent for everybody, form much of the
motivation behind the task of the Mathematics Delegation.

To come to grips with this inherent difficulty of mathematics education,
on all levels, we propose to offer a differentiated mathematics education,
on all levels, according to the interest, ability and need of the different
students. Although mathematics is important in our society of today, it is
very possible to both survive and have a successful professional career, with
very little formal training in mathematics. It is thus important to identify
the real need of mathematics for different groups of students and then to
shape educational programs to fill these needs.

Classical Greek or Latin formed an important part of secondary educa-
tion only 50 years ago, with motivations similar to those currently used for
mathematics: studies in these subjects would help develop logical thinking
and problem solving skills. Today, very few students take Greek and Latin
with the motivation that such studies are both difficult and of questionable
usefulness for the effort invested.

One may ask if mathematics education is bound to follow the same evo-
lution? The answer is likely to directly couple to the success of efforts to
make mathematics both more understandable (less difficult) and more use-
ful today (up to date), in contrast to the traditional education where many
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fail and even those who succeed may get inadequate training on inadequate
topics.

Euclid’s Elementa, with its axioms, theorems and the ruler and com-
passes as tools, was the canon of mathematics education for many cen-
turies into the mid 20th century, until it quite suddenly disappeared from
the curriculum along with Greek and Latin. Not because geometry ceased
to be of importance, but because Euclid’s geometry was replaced by com-
putational geometry with the tools being Descartes analytical geometry in
modern computational form.

2.5 Difficulties of Discussion

The difficulty of mathematics presents serious obstacles to discussions on
mathematics and mathematics education. A pure mathematician of today
would usually state that it is impossible to convey any true picture of
contemporary research to anybody outside a small circle of experts. As a
consequence, there is today little interaction between pure mathematics
and mathematics didactics.

On the other hand, presenting essential aspects of contemporary research
in computational mathematics may be possible for large audiences, includ-
ing broad groups of students of mathematics. Typically, research in com-
putational mathematics concerns the design of a computational algorithm
for solving some mathematical equation, for example the Navier—-Stokes
equations for fluid flow. The result of the algorithm may be visualized as a
movie describing some particular fluid flow, such as the flow of air around a
car or airplane, and the objective of the computation could be to compute
the drag force of a particular design, which directly couples to fuel con-
sumption and economy. Although the details of the computation would be
difficult to explain to a layman, the general structure of the computation
and its meaning could be conveyed.

Thus, presenting computational mathematics to a general public appears
to be possible. In particular, there is a good possibility of interaction be-
tween computational mathematics and mathematics didactics, although
this connection still has to be developed.

We may compare with other areas of science. Many areas of science
including physics, chemistry and biology share the difficulties and possibil-
ities of mathematics. To give a deep presentation of contemporary research
in these areas may be very difficult, but to convey essential aspects and
its possible interest for mankind may still be possible. Of course this el-
ement is crucial when trying to raise funds for research from tax payers
or private investors. To receive funding it is necessary to present reasons
understandable to both politicians and the general public.
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To sum up: Today there is little interaction between contemporary re-
search in mathematics and mathematics didactics/education. Mathematics
didactics needs influx from contemporary science, as does the education in
any topic, and computational mathematics provides a potential source of
such influx which remains to be exploited.

In fact, the sole part of mathematics education that today seems to
function reasonably well is elementary arithmetics taught in elementary
school (which is the basis of computational mathematics): to be able to
compute with numbers is so obviously useful and the rules of computation
can be made understandable even to young kids. The challenge today is to
reach beyond this elementary level of plus and minus and in understandable
form present modern computational mathematics with its abundance of
useful applications.

2.6 Summing up the Difficulties

To sum up: Discussions on mathematics education have to struggle with
some key difficulties: (i) contemporary research in pure and computational
mathematics seem to live largely separated lives, and (ii) mathematics di-
dactics largely lives a life separated from both contemporary pure and
computational mathematics.

We have met both (i) and (ii) many times when trying to present our
synthesis of analytical and computational mathematics. The present book
represents an effort to help to overcome these difficulties in order to cre-
ate a basis for a constructive discussion on mathematics education. Maybe
the difficulty of presenting contemporary pure mathematics to a larger au-
dience is insurmountable, but the situation is different for computational
mathematics. The result of a computational algorithm can often be pre-
sented in a picture or movie, like for instance the fluid flow obtained from
a solution of the Navier—Stokes equations. Everybody could get something
out from watching such a simulation as an example of virtual reality, and
could get some understanding of the principles of the computation behind
the simulation.

So, it would be natural to see a lot of interaction between mathematics
didactics and computational mathematics. As of now, such an interaction
is still in its infancy, and we hope in particular that this little book could
draw some interest from experts of mathematics didactics.
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A Brief History of Mathematics
Education

Life is good only for two things: to study mathematics and to teach
it. (Poisson 1781-1840)

3.1 From Pythagoras to Calculus and Linear
Algebra

The Babylonians formed a rich culture in Mesopotamia 2000-1000 BC
based on advanced irrigation systems and developed mathematics for var-
ious practical purposes related to building and maintaining such systems.
Using a number system with base 60, the Babylonians could do arithmetics
including addition, subtraction, multiplication and division and could also
solve quadratic equations. The development continued in ancient Greece
500 BC-100 AD, where the schools of Pythagoras and Euclid created eter-
nal foundations of arithmetics and geometry. The next leap came with
the calculus of Leibniz and Newton preceded by the analytic geometry by
Descartes, which opened for the scientific revolution starting in the 18th
century and leading into our time. calculus (or differential and integral cal-
culus) is the mathematical theory of functions, derivatives, integrals and
differential equations.

Calculus (also referred to as mathematical analysis) developed over the
centuries with important contributions from many great mathematicians
such as Cauchy and Weierstrass and found its form in the present cur-
riculum of science and engineering education in the beginning of the 20th
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century. Together with linear algebra including vector and matrix calcu-
lus introduced in the 1950s, calculus today forms the core of mathematics
education at the university level, and simplified forms thereof fill the math-
ematics curricula in secondary schools. The introduction of linear algebra
was probably stimulated by the development of the computer, but both
calculus and linear algebra are still presented as if the computer does not
exist. The foreword of a new standard calculus text usually pays tribute to
an idea that calculus found its form in the early 20th century and that a
new book can only polish on a forever given picture.

The classical curriculum of the university appearing in the 15th century
was the trivium (intersection of three roads) containing grammar, rethorics
and dialectics. There was also a quadrivium containing arithmetics, geome-
try, music and astronomy, all viewed as parts of mathematics following the
tradition of the Pythagorean school. Arithmetics and geometry connected
to thought and music and astronomy to experience and reflect distinctions
between mathematics and the sciences still valid in our time.

A further distinction was made between arithmetics and music being
discrete (or digital), while Geometry and Astronomy were thought of as
continuous. We will return to this aspect below, which with modern aspects
of digital computation gets new light.

3.2  From von Neumann into Modern Society

We all know that the modern computer is fundamentally changing our so-
ciety. One may describe this development alternatively as a mathematics
revolution reflecting that the computer may be thought of as a mathemat-
ical machine. More precisely, the modern computer is referred as the von
Neumann Machine after the famous mathematician John von Neumann
who first formulated the mathematical principles of modern computer de-
sign and computer programming in the early 1940s.

Von Neumann followed up on a long tradition within mathematics of
constructing machines for automated computation, from the mechanical
calculators of Pascal and Leibniz doing elementary arithmetics, over Bab-
bage’s Difference Engine and Analytical Computing Engine designed to
solve differential equations, to the theoretical Turing Machine capable of
mimicing the action of any conceivable computer. The motivation of all
these machines was to enable automated computation for various purposes,
typically connected to calculus.

We may view our modern information society as the society of auto-
mated computation. Similarly, we may view the modern industrial society
as the society of automated production. Altogether, we may view our mod-
ern society as a combination of the industrial society and the information
society.
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In the chapter What is Mathematics? below, we give examples of the use
of mathematics in our information society, with automated computation
on words, images, movies, sound, music which form the essence of the new
world of wvirtual reality.

3.3 Mathematics Education and the Computer

We observed above that mathematics education in its current canonical
form of calculus, is basically the same as before the computer revolution.
We argue that this state of affairs is not motivated from either scientific
or applications point of view. We believe that the computer is radically
changing calculus and that this change has to be seen in the mathematics
curriculum.

This point of view is not the standard one giving the rationale of the
present mathematics curriculum, which is much more modest, something
like: ok, the computer is now here, but the essence of calculus remains the
same and the education should not be radically changed in any respect.

This book is about this issue: does the computer create a new form of
calculus to be presented in education, a reform calculus? We answer: yes!
From this basis we present a program for such a new form of calculus in
the form of Computational Mathematical Modeling including computation
as a new element.

Proponents of standard calculus would answer: no! (or: hardly!). The
standard curriculum should last for another 100 years. Nothing much has
to be changed.

So there we stand today, without any clear picture emerging. Standard
calculus still dominates the scene, but reform calculus is quickly growing.
And the change could come quickly. It is possible to change from standard
to reform calculus instantly. We did this for a group of chemistry students
at Chalmers, and we are just waiting to see other students follow. ..

3.4 The Multiplication Table

The multiplication table may be viewed as the corner stone of elementary
mathematics education. The educated man of the 17th century did not nec-
essarily master the multiplication table, as this knowledge was something
for practitioners like merchants and carpenters, not for men of learning.
This is illustrated in the famous diary by Samuel Pepys 1660-69 during his
studies at the University of Cambridge, where he describes his difficulties
of learning to master the table: “the most difficult subject he had ever en-
countered”. This was the same Pepys that created the modern English fleet
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and became the chairman of the Royal Society and publisher of Newton’s
monumental Principia Mathematica.

Despite Pepys’ difficulties, the multiplication table and spelling formed
the very core of the public school as it was formed in the mid 19th century.
These topics gave instruments for exercising control and selection in the
school system, as they gave objective criteria for sorting students to serve
in the industrial society.

3.5 Again: What?

In the information society of today, difficulties of spelling can be com-
pensated by using a word processor with a spell checker, and would not
necessarily be a stumbling block for a career in academics, administration
or politics for all the talented and intelligent people with some dyslectic
syndrome. Likewise, today the pocket calculator can easily compensate a
lack of mastery of the multiplication table, not to speak of the even more
complicated algorithm for long division. Thus, today the corner stones of
traditional education, spelling and the multiplication table, seem to be
loosing importance as pillars of elementary education.

So if the multiplication table and long division no longer serve as the
canon of elementary mathematics education, what could/should then be
taught? What could/should be the purpose of elementary mathematics
education? Or should the old canon be resurrected?



4
What 1s Mathematics?

The question of the ultimate foundations and the ultimate meaning
of mathematics remains open; we do not know in what direction it
will find its final solution or whether a final objective answer may be
expected at all. “Mathematizing” may well be a creative activity of
man, like language or music, of primary originality, whose historical
decisions defy complete objective rationalization. (Weyl)

The universal mathematics is, so to speak, the logic of the imagina-
tion. (Leibniz)

4.1 Introduction

We start out by giving a very brief idea of the nature of mathematics
and the role of mathematics in our society. This is the first chapter of
Body&Soul Vol 1.

4.2 The Modern World: Automated Production
and Computation

The mass consumption of the industrial society is made possible by the
automated mass production of material goods such as food, clothes, housing,
TV-sets, CD-players and cars. If these items had to be produced by hand,
they would be the privileges of only a select few.
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FIGURE 4.1. First picture of book printing technique (from Danse Macabre,
Lyon 1499)

Analogously, the emerging information society is based on mass con-
sumption of automated computation by computers that is creating a new
“virtual reality ” and is revolutionizing technology, communication, admin-
istration, economy, medicine, and the entertainment industry. The infor-
mation society offers immaterial goods in the form of knowledge, infor-
mation, fiction, movies, music, games and means of communication. The
modern PC or lap-top is a powerful computing device for mass produc-
tion/consumption of information e.g. in the form of words, images, movies
and music.

Key steps in the automation or mechanization of production were: Guten-
berg’s book printing technique (Germany, 1450), Christoffer Polhem’s auto-
matic machine for clock gears (Sweden, 1700), The Spinning Jenny (Eng-
land, 1764), Jacquard’s punched card controlled weaving loom (France,
1801), Ford’s production line (USA, 1913), see Fig. 4.1, Fig. 4.2, and
Fig. 4.3.

Key steps in the automation of computation were: Abacus (Ancient
Greece, Roman Empire), Slide Rule (England, 1620), Pascal’s Mechanical
Calculator (France, 1650), Babbage’s Difference Machine (England, 1830),
Scheutz’ Difference Machine (Sweden, 1850), ENIAC Electronic Numerical
Integrator and Computer (USA, 1945), and the Personal Computer PC
(USA, 1980), see Fig. 4.5, Fig. 4.6, Fig. 4.7 and Fig. 4.8. The Difference
Machines could solve simple differential equations and were used to com-
pute tables of elementary functions such as the logarithm. ENIAC was one
of the first modern computers (electronic and programmable), consisted of
18,000 vacuum tubes filling a room of 50 x 100 square feet with a weight
of 30 tons and energy consuming of 200 kilowatts, and was used to solve
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FIGURE 4.2. Christoffer Polhem’s machine for clock gears (1700) and the Spin-
ning Jenny (1764).

FIGURE 4.3. Ford assembly line (1913).
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the differential equations of ballistic firing tables as an important part of
the Allied World War II effort. A modern laptop at a cost of $2000 with a
processor speed of 2 GHz and internal memory of 512 Mb has the compu-
tational power of hundreds of thousands of ENIACs.

Automation is based on frequent repetition of a certain algorithm or
scheme with new data at each repetition. The algorithm may consist of
a sequence of relatively simple steps together creating a more complicated
process. In automated manufacturing, as in the production line of a car fac-
tory, physical material is modified following a strict repetitive scheme, and
in automated computation, the 1s and Os of the microprocessor are modified
billions of times each second following the computer program. Similarly, a
genetic code of an organism may be seen as an algorithm that generates a
living organism when realized in interplay with the environment. Realizing
a genetic code many times (with small variations) generates populations
of organisms. Mass-production is the key to increased complexity follow-
ing the patterns of nature: elementary particle — atom — molecule and
molecule — cell — organism — population, or the patterns of our society:
individual — group — society or computer — computer network — global
net.
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FIGURE 4.4. Computing device of the Inca Culture.
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4.3 The Role of Mathematics

Mathematics may be viewed as the language of computation and thus lies
at the heart of the modern information society. Mathematics is also the lan-
guage of science and thus lies at the heart of the industrial society that grew
out of the scientific revolution in the 17th century that began when Leibniz
and Newton created calculus. Using calculus, basic laws of mechanics and
physics, such as Newton’s law, could be formulated as mathematical mod-
els in the form of differential equations. Using the models, real phenomena
could be simulated and controlled (more or less) and industrial processes
could be created.
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FIGURE 4.5. Classical computational tools: the Abacus, Galileo’s Compass and
the Slide Rule.

The mass consumption of both material and immaterial goods, consid-
ered to be a corner-stone of our modern democratic society, is made possible
through automation of production and computation. Therefore, mathemat-
ics forms a fundamental part of the technical basis of the modern society
revolving around automated production of material goods and automated
computation of information.

The vision of virtual reality based on automated computation was for-
mulated by Leibniz already in the 17th century and was developed further
by Babbage with his Analytical Engine in the 1830s. This vision is finally
being realized in the modern computer age in a synthesis of Body & Soul
of mathematics.

We now give some examples of the use of mathematics today that are
connected to different forms of automated computation.
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FIGURE 4.6. Napier’s Bones (1617), Pascal’s Calculator (1630), Babbage’s Dif-
ference Machine (1830) and Scheutz’ Swedish Difference Machine (1850).
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“En maskin eff rikag med

FIGURE 4.7. Odhner’s mechanical calculator made in Go&teborg, Sweden,
1919-1950

FIGURE 4.8. ENIAC Electronic Numerical Integrator and Calculator (1945).
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4.4  Design and Production of Cars

In the car industry, a model of a component or complete car can be made
using Computer Aided Design CAD. The CAD-model describes the geom-
etry of the car through mathematical expressions and the model can be
displayed on the computer screen. The performance of the component can
then be tested in computer simulations, where differential equations are
solved through massive computation, and the CAD-model is used as input
of geometrical data. Further, the CAD data can be used in automated pro-
duction. The new technique is revolutionizing the whole industrial process
from design to production.

4.5 Navigation: From Stars to GPS

A primary force behind the development of geometry and mathematics
since the Babylonians has been the need to navigate using information from
the positions of the planets, stars, the moon and the sun. With a clock and
a sextant and mathematical tables, the sea-farer of the 18th century could
determine his position more or less accurately. But the results depended
strongly on the precision of clocks and observations and it was easy for
large errors to creep in. Historically, navigation has not been an easy job.

During the last decade, the classical methods of navigation have been
replaced by GPS, the Global Positioning System. With a GPS navigator in
hand, which we can buy for a couple of hundred dollars, we get our coordi-
nates (latitude and longitude) with a precision of 50 meters at the press of
a button. GPS is based on a simple mathematical principle known already
to the Greeks: if we know our distance to three point is space with known
coordinates then we can compute our position. The GPS uses this princi-
ple by measuring its distance to three satellites with known positions, and
then computes its own coordinates. To use this technique, we need to de-
ploy satellites, keep track of them in space and time, and measure relevant
distances, which became possible only in the last decades. Of course, com-
puters are used to keep track of the satellites, and the microprocessor of a
hand-held GPS measures distances and computes the current coordinates.

The GPS has opened the door to mass consumption in navigation, which
was before the privilege of only a few.

4.6 Medical Tomography

The computer tomograph creates a picture of the inside of a human body
by solving a certain integral equation by massive computation, with data
coming from measuring the attenuation of very weak x-rays sent through
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FIGURE 4.9. GPS-system with 4 satellites.

the body from different directions. This technique offers mass consump-
tion of medical imaging, which is radically changing medical research and
practice.

4.7 Molecular Dynamics and Medical Drug Design

The classic way in which new drugs are discovered is an expensive and time-
consuming process. First, a physical search is conducted for new organic
chemical compounds, for example among the rain forests in South America.
Once a new organic molecule is discovered, drug and chemical companies
license the molecule for use in a broad laboratory investigation to see if the
compound is useful. This search is conducted by expert organic chemists
who build up a vast experience with how compounds can interact and which
kind of interactions are likely to prove useful for the purpose of controlling
a disease or fixing a physical condition. Such experience is needed to reduce
the number of laboratory trials that are conducted, otherwise the vast range
of possibilities is overwhelming.

The use of computers in the search for new drugs is rapidly increasing.
One use is to makeup new compounds so as to reduce the need to make
expensive searches in exotic locations like southern rain forests. As part of
this search, the computer can also help classify possible configurations of
molecules and provide likely ranges of interactions, thus greatly reducing
the amount of laboratory testing time that is needed.
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FIGURE 4.10. The Valium molecule.

4.8 Weather Prediction and Global Warming

Weather predictions are based on solving differential equations that de-
scribe the evolution of the atmosphere using a super computer. Reasonably
reliable predictions of daily weather are routinely done for periods of a few
days. For longer periods. the reliability of the simulation decreases rapidly,
and with present day computers daily weather predictions for a period of
two weeks are impossible.

However, forecasts over months of averages of temperature and rainfall
are possible with present day computer power and are routinely performed.

Long-time simulations over periods of 20-50 years of yearly temperature-
averages are done today to predict a possible global warming due to the use
of fossil energy. The reliability of these simulations are debated.

4.9 Economy: Stocks and Options

The Black-Scholes model for pricing options has created a new market of
so called derivative trading as a complement to the stock market. To cor-
rectly price options is a mathematically complicated and computationally
intensive task, and a stock broker with first class software for this purpose
(which responds in a few seconds), has a clear trading advantage.
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4.10 The World of Digital Image, Word and Sound

The modern computer and internet now offer us a flood of information,
science or entertainment in digital form. Through Data Mining we can
search massive Data Bases for information. By Data Compression of im-
ages, words and sound we can store and transmit huge Data Bases. This
whole new world of our information society is based on mathematical al-
gorithms for compressing and searching data.

4.11 Languages

Mathematics is a language. There are many different languages. Our mother
tongue, whatever it happens to be, English, Swedish, or Greek, is our most
important language, which a child masters quite well at the age of three.
To learn to write in our native language takes longer time and more effort
and occupies a large part of the early school years. To learn to speak and
write a foreign language is an important part of secondary education.

Language is used for communication with other people for purposes of
cooperation, exchange of ideas or control. Communication is becoming in-
creasingly important in our society as the modern means of communication
develop.

Using a language we may create models of phenomena of interest, and by
using models, phenomena may be studied for purposes of understanding or
prediction. Models may be used for analysis focussed on a close examination
of individual parts of the model and for synthesis aimed at understanding
the interplay of the parts that is understanding the model as a whole. A
novel is like a model of the real world expressed in a written language like
English. In a novel the characters of people in the novel may be analyzed
and the interaction between people may be displayed and studied.

The ants in a group of ants or bees in a bees hive also have a language
for communication. In fact in modern biology, the interaction between cells
or proteins in a cell is often described in terms of entities ”talking to each
other”.

It appears that we as human beings use our language when we think. We
then seem to use the language as a model in our head, where we try various
possibilities in simulations of the real world: ”If that happens, then I'll do
this, and if instead that happens, then I will do so and so...”. Planning our
day and setting up our calendar is also some type of modeling or simulation
of events to come. Simulations by using our language thus seems to go on
in our heads all the time.

There are also other languages like the language of musical notation with
its notes, bars, and scores. A musical score is like a model of the real music.
For a trained composer, the model of the written score can be very close to
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the real music. For amateurs, the musical score may say very little, because
the score is like a foreign language which is not understood.

4.12 Mathematics as the Language of Science

Mathematics has been described as the language of science and technology
including mechanics, astronomy, physics, chemistry, and topics like fluid
mechanics, solid mechanics, and electromagnetics. The language of mathe-
matics is used to deal with geometrical concepts like position and form and
mechanical concepts like velocity, force and field. More generally, mathe-
matics serves as a language in any area that includes quantitative aspects
described in terms of numbers, such as economy, accounting, and statistics.
Mathematics serves as the basis for the modern means of electronic com-
munication where information is coded as sequences of 0’s and 1’s and is
transferred, manipulated, and stored.

The words of the language of mathematics often are taken from our usual
language, like points, lines, circles, velocity, functions, relations, transfor-
mations, sequences, equality, and inequality.

A mathematical word, term or concept is supposed to have a specific
meaning defined using other words and concepts that are already defined.
This is the same principle as is used in a thesaurus, where relatively compli-
cated words are described in terms of simpler words. To start the definition
process, certain fundamental concepts or words are used, which cannot be
defined in terms of already defined concepts. Basic relations between the
fundamental concepts may be described in certain axioms. Fundamental
concepts of Euclidean geometry are point and line, and a basic Euclidean
axiom states that through each pair of distinct points there is a unique
line passing. A theorem is a statement derived from the axioms or other
theorems by using logical reasoning following certain rules of logic. The
derivation is called a proof of the theorem.

4.13 The Basic Areas of Mathematics

The basic areas of mathematics are
e geometry
e algebra
e analysis.

Geometry concerns objects like lines, triangles, circles. algebra and anal-
ysis is based on numbers and functions. The basic areas of mathematics
education in engineering or science education are
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e calculus
e linear algebra.

Calculus is a branch of analysis and concerns properties of functions such
as continuity, and operations on functions such as differentiation and inte-
gration. Calculus connects to linear algebra in the study of linear functions
or linear transformations and to analytical geometry, which describes ge-
ometry in terms of numbers. The basic concepts of calculus are

e function
e derivative
e integral.

Linear algebra combines geometry and algebra and connects to analytical
geometry. The basic concepts of linear algebra are

e vector

e vector space

e projection, orthogonality
e linear transformation.

The Body&Soul series of books teach the basics of calculus and linear
algebra, which are the areas of mathematics underlying most applications.

4.14 What is Science?

The theoretical kernel of natural science may be viewed as having two
components

e formulating equations (modeling),
e solving equations (computation).

Together, these form the essence of mathematical modeling and computa-
tional mathematical modeling. The first really great triumph of science and
mathematical modeling is Newton’s model of our planetary system as a set
of differential equations expressing Newton’s law connecting force, through
the inverse square law, and acceleration. An algorithm may be seen as a
strategy or constructive method to solve a given equation via computation.
By applying the algorithm and computing, it is possible to simulate real
phenomena and make predictions.

Traditional techniques of computing were based on symbolic or numer-
ical computation with pen and paper, tables, slide ruler and mechanical
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calculator. Automated computation with computers is now opening new
possibilities of simulation of real phenomena according to Natures own
principle of massive repetition of simple operations, and the areas of appli-
cations are quickly growing in science, technology, medicine and economics.

Mathematics is basic for both steps (i) formulating and (ii) solving equa-
tion. Mathematics is used as a language to formulate equations and as a
set of tools to solve equations.

Fame in science can be reached by formulating or solving equations. The
success is usually manifested by connecting the name of the inventor to the
equation or solution method. Examples are legio: Newton’s method, Euler’s
equations, Lagrange’s equations, Poisson’s equation, Laplace’s equation,
Navier’s equation, Navier—Stokes’ equations, Boussinesq’s equation, Ein-
stein’s equation, Schrodinger’s equation, Black-Scholes formula. . ., some of
which we will meet below.

4.15 Mathematics is Difficult: Choose Your Own
Level of Ambition

First, we have to admit that mathematics is a difficult subject, and we see
no way around this fact. Secondly, one should realize that it is perfectly
possible to live a happy life with a career in both academics and industry
with only elementary knowledge of mathematics. There are many examples
including Nobel Prize winners. This means that it is advisable to set a level
of ambition in mathematics studies which is realistic and fits the interest
profile of the individual student. Many students of engineering have other
prime interests than mathematics, but there are also students who really
like mathematics and theoretical engineering subjects using mathematics.
The span of mathematical interest may thus be expected to be quite wide
in a group of students following a course based on the Body&Soul series of
books, and it seems reasonable that this would be reflected in the choice
of level of ambition.

4.16 Some Parts of Mathematics are Easy

On the other hand, there are many aspects of mathematics which are not
so difficult, or even “simple”, once they have been properly understood.
Thus, Body&Soul Vol I-I1I contains both difficult and simple material, and
the first impression from the student may give overwhelming weight to the
former. To help out we have in Body&Soul collected the most essential
nontrivial facts in short summaries in the form of Calculus Tool Bag I and
11, Linear Algebra Tool Bag, Differential Equations Tool Bag, Applications
Tool Bag, Fourier Analysis Tool Bag and Analytic Functions Tool Bag. The
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reader will find the tool bags surprisingly short: just a couple pages, alto-
gether say 15-20 pages. If properly understood, this material carries a long
way and is “all” one needs to remember from the math studies for further
studies and professional activities in other areas. Since the first three vol-
umes of the Body&Soul series of books contains about 1200 pages it means
50-100 pages of book text for each one page of summary. This means that
the books give more than the absolute minimum of information and has
the ambition to give the mathematical concepts a perspective concerning
both history and applicability today. So we hope the student does not get
turned off by the quite a massive number of words, by remembering that
after all 15-20 pages captures the essential facts. During a period of say
one year and a half of math studies, this effectively means about one third
of a page each week!

4.17 Increased/Decreased Importance of
Mathematics

Body&Soul reflects both the increased importance of mathematics in the
information society of today, and the decreased importance of much of
the analytical mathematics filling the traditional curriculum. The student
should thus be happy to know that many of the traditional formulas are no
longer such a must, and that a proper understanding of relatively few basic
mathematical facts can help a lot in coping with modern life and science.
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Virtual Reality and the Matrix

All thought is a kind of computation. (Hobbes)

5.1 Virtual Reality

The world of wvirtual reality is created using computational mathematics.
Virtual reality includes the flood of computer games with increasing real-
ism, but also e.g. the rapidly developing field of medical imaging, allowing
a virtual patient or organ to be created, which the surgeon can use to plan
and perform the actual operation on the real patient. Virtual patients can
also be used in simulators for the training of surgeons, instead of real bodies.
Medical imaging is based on computational mathematics where informa-
tion from very weak x-rays or acoustic/electro-magnetic waves penetrating
the body is used in a massive computation on a computer to create a 3D
image from data measured outside the body.

Virtual reality seems unlimited in scope, with just the computational
power setting the limits. To create virtual reality we need tools of imaging
and tools of simulation to give the created images life, and the tools come
from computational mathematics.
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5.2 Digital Cameras

Many of us now use digital cameras, and are familiar with the representa-
tion of a 2D picture as a rectangular array of pixels with each pixel being a
small square with a certain color. For example a picture of say 2000 x 1000
pixels would be a 2 megapixel picture, which would occupy roughly 1 Mb
on the memory card of the camera. We also know that we may store the
picture in compressed form using less memory (e.g the JPEG-format), and
that we may subject the picture to various transformations all based on
different algorithms from computational mathematics.

5.3 MP3

In 1987 the German Fraunhofer Institute started to develop a new com-
pressed form of digital representation of sound (audio coding), which re-
sulted in the MP3 (ISO-MPEG Audio Layer-3) standard, which is now used
extensively. A full digital representation of a sound signal of a bandwidth
of 44 kHz would require 1.4 Mbits/second, while MP3 typically needs only
112 kbps with a reduction factor of 12, without significant loss of quality.
MP3 acts like a mathematical filter simplifying the sound signal without
changing the impression by the ear.

5.4 Matrix and Marilyn Monroe

The film Matriz has become a cult movie, not without good reason. Matrix
connects to basic aspects of human spiritual life concerning our perceptions
of what reality may be. We all know that what we directly perceive as reality
is filtered through our 5 senses and that there are many aspects of light,
sound, smell, taste, and tactile sensations “out there” that we miss. And
we may also feel that there may be even more than that. Different religions
seek to present “virtual realities”, often believed to be more “true” than
our every-day supposedly distorted images.

Young people now spend several hours a day in the virtual reality of the
computer. We may as adults view this as silly and meaningless, but the kids
may have a different perception. Books also offer a kind of virtual reality,
like all the endless stories told during the many years homo sapiens spent
in the caves before turning on the lap top computer in the high-rise flat or
internet cafe, and thus we seem to have both a talent and a need of virtual
reality, in different forms. What makes a good book better than a good
computer game or interactive computer novel, where we can directly enter
the world of the imagined characters and interact with them? Wouldn’t
it be nice to be able to interact with real persons like Marilyn Monroe or
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Einstein in a virtual reality, rather than just looking at some photos in a
book? Or interact with fictitious people from the great novels, like Captain
Nemo, Madame Bovary, Charles Swann, Molly Bloom, and others?

FIGURE 5.1. Captain Nemo taking a star sight from the deck of the Nautilus.
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Mountain Climbing

Every new body of discovery is mathematical in form, because there
is no other guidance we can have. (Darwin)

The key principle of our whole educational system states that education
s based on science, more precisely education of today should be based on
contemporary science. We touched this principle above and will return to
it below in some more detail.

We now present an aspect of mountain climbing illustrating the key
principle or the role of science in education, or the role of a scientist as a
discoverer of scientific truths.

In mountain climbing one important technique is to facilitate climbing
by attaching a rope to bolts driven into glitches in the rock. Once the rope
is fastened, it may serve as a safety measure for many climbers, and thus
facilitate climbing of difficult passages to reach new heights. However, the
first climber will have to climb to a new level without a rope and therefore
the role and task of the first climber is very crucial.

Now, in education as a kind of climbing process to higher levels of knowl-
edge and understanding, the scientist has the role of first climbing to a new
level to secure a fixed point in a Mountain of Knowledge. This may be a
risky and difficult task, but if successful it may help many other scientists
and students to follow and reach that new level.

The analogy also illustrates the role of the most novel scientific discovery
in setting the position of all the bolts and the connecting rope below the
new level. Since the entire rope has to hang together, it may be necessary to
change the position of many old bolts to fit the position of the just one new
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bolt on a higher level. This reflects a principle of unity in science, which
does not mean that there may not be several ropes leading to a mountain
top, but that each rope has to be connected.

In particular, we want this way to emphasize the fact that a new scien-
tific discovery may influence also the education on all levels from elementary
and up. A new scientific discovery about the genetic code or the nature of
gravitation may directly influence education on all levels. We see this hap-
pening in biology and physics, and in social and political sciences along
with the rapid changes of society, and of course in different areas of engi-
neering along with advancements in technology, and could expect that it
should also happen in mathematics: a new bolt on a new level may change
the entire rope.

In our own teaching the effect may be as follows: in a course for second
year engineering students, we start by posing the top problem of contem-
porary science of turbulence, and during the course we work our way from
basic elements towards a solution of this problem. How this is done is ex-
plained in the chapter Turbulence and the Clay Prize below. We thus put
contemporary research into basic mathematics education, as is necessary
to do in for example molecular biology, where even a 10 year old knowledge
may have passed a best-before date.
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FIGURE 6.1. “A born climber’s appetite for climbing is hard to satisfy; when it

comes upon him he is like a starving man with a feast before him; he may have
other business on hand, but it must wait.” (Mark Twain)
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Scientific Revolutions

I know that the great Hilbert said “We will not be driven out from
the paradise Cantor has created for us”, and I reply “I see no reason
to walking in”. (R. Hamming)

7.1 Galileo and the Market

During the evolution of our culture, the shaman of the primitive religion
was replaced by the priest, who is now being replaced by the scientist, as
the chief connection of ordinary people to the Creator. In 1633 the scientist
Galileo under a threat of death penalty from the Catholic Church had
to deny his conviction that the planets of our solar system including the
earth orbit around the sun. That time the church seemed to be the winner,
but the ideas of Galileo initiated the scientific revolution which changed
the game completely: the important disputes no longer occur between the
church and science but rather between different disciplines and schools of
science. Today, investors on the Market are hoping to see new scientific
discoveries that can be patented and can generate fortunes. So the fight to
gain ideological or economical influence in science has a long history and
continues today under new rules and conditions of competition.
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7.2 Thomas Kuhn and Scientific Revolutions

According to Thomas Kuhn, the author of the famous book “The Structure
of Scientific Revolutions”, science develops through a series of scientific rev-
olutions, where new paradigms or sets of basic principles or beliefs replace
old ones. A paradigm includes (i) formulation of questions, (ii) selection of
methods to answer the questions and (iii) definition of areas of relevance.
A new paradigm develops when certain questions cannot find answers with
available theories/methods, and therefore new theories/methods are devel-
oped which give new answers of new relevance, but also pose new questions,
and so on.

The scientific revolution of the 17th century was Newton’s mechanics
including his theory of gravitation giving Galileo convincing mathematical
support.

Kuhn carefully analyzed the scientific revolution of the new physics of
Quantum Mechanics emerging in the 1920s replacing/extending Newtons
Mechanics. Mathematically, this corresponds to replacing Newton’s equa-
tions by Schrédinger’s. Physically, it corresponds to viewing e.g. an electron
as a wave rather than a particle, with solutions of Schrodinger’s equation
being referred to as “wave functions”. It also corresponds to a shift to-
wards a partly probabilistic view instead of the fully deterministic view of
classical mechanics, expressed through Heisenberg’s Uncertainty Relation.

Kuhn noticed that a scientific revolution could be perceived as “invisible”
in the sense that many scientists would not be aware of (or simply deny)
an ongoing shift of paradigm, in a (subconscious) reaction to save the old
System.

So shifts of paradigms in science do occur, and obviously are of crucial
importance in the evolution of science. They correspond to key steps in the
evolution of life on Earth, like the revolutionary new concept of the first
mammals developed during the time of the Dinosaurs 65 millions years
ago, which quickly took over the scene (with some help from volcanos or
meteors supposedly ending the era of the Dinosaurs).

7.3 Shift of Paradigm in Mathematics?

Today, we may witness such a shift of paradigm from mathematics without
computer to mathematics with computer, although according to Kuhn it
could be expected to be “invisible” to many actors. As in all shifts of
paradigm, the situation may seem very confused to the outside observer,
with the old and the new viewpoints both trying to get the attention. And of
course one may expect the fight to partly be tough because important values
and investments are at stake. So we invite the reader to make observations
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and draw conclusions, and to be careful not to accept anything for given
unless good reasons to do so are presented.

In physics we see today a dispute between the new physics of string
theory and quantum mechanics, and nobody seems today to be able to
predict the outcome. String theory may change physics just as quantum
mechanics did, or it may disappear as one of the unhappy mutations in the
evolution of science. Time will tell. ..

The prospects for computational mathematics closely connect to the
prospects for the whole IT-sector. In the short run it may be difficult to
tell what to invest in, as a market analyst probably would say, but in the
long run the prospects are formidable.

7.4 Quarrelling Mathematicians

It is important to notice that also mathematics as a science has met serious
controversies. The fight during the 1930s between the formalist and con-
structivist schools within mathematics is described below in the chapter
Do Mathematicians Quarrel?, reprinted from Body&Soul Vol 1.

A very short summary goes as follows: The leader of the formalist school
was the mathematician Hilbert (who formulated the famous 23 Problems
at the World Mathematics Congress in Paris in 1900). His hope was to give
a rigorous basis to mathematics based on “finitary” principles. The hope of
Hilbert was refuted first by Godel, who showed that there are mathemati-
cal truths, which can not be proved “finitary”, and second by Turing (the
inventor of the principle of the computer), who proved that there are num-
bers which are uncomputable by “finitary” methods. Hilbert’s ideas were
simply incompatible with those of Godel and Turing, but the controversy
was never resolved. Instead, mathematics split into pure mathematics dis-
regarding the limitations given by Godel and Turing, and computational
mathematics working with the possibilities and limitations of “finitary” or
computational methods. Pure mathematics took charge of the mathematics
departments and computational mathematics developed outside.

Today the rapidly increasing access to cheap computational power brings
new life to these questions, and this time maybe a healthy synthesis may
be created, which is basic idea behind Body&Soul.

7.5 Change of Paradigm? or Not?

A crucial question for mathematics education today is thus if: (B1) there is
a crisis in mathematics education today, and (B2) a change of paradigm or
scientific revolution caused by the computer is now going on in mathematics
as a science.
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There are many experts and laymen who claim that B1 and B2 are true,
and there are many who claim the opposite. This is normal in a change of
paradigm: some see it coming before others. When everybody sees the same
thing, the change of paradigm is already over. There are many examples
of such reactions from the last decades of the information society with
the changes of paradigm caused by word processors, mobile telephones
and internet, and of course many throughout the history of the industrial
society.

7.6 To Prove or Prove Not

To prove that Saddam Hussein had no weapons of mass-destruction (if he
didn’t), was probably more difficult than proving that he actually had (if
he did). So to be really sure that a change of paradigm is not going on, may
be more difficult (because you have to go through all evidence), than to be
really sure that it is (because one piece of evidence may be enough). One
single site for the production of weapons of mass destruction in operation
would have been enough. But no single one was found.

7.7 The Role of Text Books

According to Thomas Kuhn a scientific paradigm is described in its text
books. The writers of text books interpret the paradigm and transmit it to
new generations of students. The large number of standard Calculus books,
all quite similar, represent a traditional paradigm formed in the beginning
of the 20th century. The Body&Soul reform project with its sequence of
text books represents our own effort to present a new paradigm including
computational mathematics. Time will show if our efforts had any effect or
not. At least we tried.
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Education is Based on Science

In science one tries to tell people, in such a way as to be understood
by everyone, something that no one ever knew before. But in poetry,
it’s the exact opposite. (Dirac 1902-1984)

The education at a modern university is assumed to have a scientific
basis. This means that the material presented should reflect the current
standpoint of science, not the standpoint say 100 years ago. This is very
evident in scientific disciplines such as physics, chemistry and biology, where
it would be impossible to neglect the discovery of the electron (Nobel Prize
1906) or the molecular structure of DNA (Nobel Prize 1962).

The education programs in primary and secondary schools necessarily
have to be simplified versions of the corresponding university programs,
and thus also has to have a scientific basis. Even in pre-school education,
it would today be impossible to deny the existence of bacteria (discovered
in the late 19th century), and the electron would necessarily appear in
secondary school physics.

8.1 The Scientific Basis of Standard Calculus

In mathematics education however, the situation seems to be different. The
standard calculus book of today is modeled on a pattern set during the 19th
century based on the work by e.g. Cauchy and Weierstrass, and the impact
of modern computational methods is very small. Authors of calculus books
(and there are many) seem to assume that calculus in this classical form
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will last forever, and each new calculus book seems to be a rewrite of an
already existing calculus book. In particular, students of calculus would
find no reason to believe that the scientific basis of calculus has changed
because of the development of the computer and computational methods
during the 20th century, just as if in physics the electron had not been
discovered.

The standard view would thus be that nothing fundamental in calculus
has changed from the end of the 19th to the end of the 20th century:
derivatives, integrals and differential equations are eternal objects and their
meaning and role in science do not depend on the existence of the computer.
With this view the scientific basis of calculus has not changed during the
last 100 years in any essential way and therefore the calculus education
does not have to be changed either.

8.2 A New Scientific Basis

Our point is different from the standard view: we firmly believe that the
computer has fundamentally changed calculus as a science. We share this
view with many scientists and mathematicians, but the standard view is
still dominating. There are things that have not changed, but there are
also aspects where the perspective indeed has changed a lot. Thus, the
questions and answers partly are very different with the computer than
without. Our Body&Soul reform program is based on this conviction. An
example: with the computer one can computationally solve mathematical
equations such as the Navier—Stokes equations for fluid flow, for which
analytical solution has been and most likely always will be impossible. The
impact of computational methods in fluid dynamics as a science and area of
engineering practice is already strong and will grow stronger. For the first
time in human history it is possible to computationally simulate turbulent
fluid flow and uncover its mysteries.

We return to this topic below in a discussion on the famous Clay Prize
offering $1 million for an analytical mathematical proof of existence and
uniqueness of solutions to the Navier—Stokes equations.

Many mathematicians would today claim that our standpoint is not nec-
essarily the right one. They would advocate that it is possible to present
calculus as a teacher or author without any deep insight into modern com-
putational mathematics. We argue that such a deep insight indeed is neces-
sary. We meet this problem constantly when we seek to present our reform
calculus: without a common scientific basis communication becomes very
difficult. We already addressed this issue above and will return to this key
aspect below.
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8.3 The Scientific Basis of Body&Soul

The Body&Soul reform program is an off-spring of our scientific work
within computational mathematics over the last 30 years focused on de-
veloping a general methodology for computational solution of differential
equations. We thus believe that Body&Soul has a scientific basis which
reflects a current stand-point of science.

The fact that Body&Soul is based on contemporary science represents
one of the difficulties of discussion already pointed to. It appears to us
impossible to have any sensible reaction to Body&Soul without a fairly
deep knowledge of contemporary research in computational mathematics.

Our main message is that indeed computation gives calculus a new mean-
ing and role in science and education as well as a new scientific basis.

Our experience is that a serious discussion of calculus reform without
a common scientific basis including modern computation is very difficult,
and this difficulty will remain as long as computational methods are not
considered to be an integral part of calculus.

To sum up: Our reform calculus program is motivated by our scientific
work on computational methods. It is our conviction based on our experi-
ence from this work that computation is now giving calculus a new meaning
and role as a science, and that the education and use of calculus in appli-
cations will have to be reformed to properly take the possibilities opened
into account.

We believe that the impact of computation on mathematics can no longer
be neglected.
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The Unreasonable Effectiveness of
Mathematics in the Natural Sciences?

I don’t like it (quantum mechanics), and I'm sorry I ever had any-
thing to do with it. (Schréodinger)

In 1960, E.P. Wigner, a joint winner of the 1963 Nobel Prize for physics,
published a paper with the title On the Unreasonable Effectiveness of Math-
ematics in the Natural Sciences in Communications in Pure and Applied
Mathematics. Wigner follows up on Galileo’s idea that The book of nature
1s written in the language of mathematics. The title captures Wigner’s main
message in the following two key points:

(1) Mathematics is “effective” in describing phenomena in mechanics and
physics.

(2) The “effectiveness” appears to be “unreasonable” or mysterious.

The title also suggests that the “effectiveness” of mathematics outside the
natural sciences may be far less obvious.

We may view (1) as the main motivation to include mathematics as
a basis in education in the natural sciences. We now present some key
examples which would seem to give an affirmation of (1), and we then
return to discuss (1) and (2). In particular, we seek to uncover the paradox
of (2) following Wittgenstein’s idea that an apparent paradox must be the
result of a confusing use of language.
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9.1 Newton’s Model of Gravitation

The basic example is of course Newton’s theory of gravitation based on (i)
Newton’s (Second) Law of Motion: ma = F, stating that the acceleration
a of a body multiplied by its mass m is equal to the force F' acting on
the body, combined with (ii) Newton’s Inverse Square Law, stating that
the gravitational force F' between two point masses is proportional to their
masses my and mso and inversely proportional to their distance r squared,
with G being a universal constant of gravitation, that is F' = G ™52, Com-
bining these two laws Newton’ s theory takes the form of a set of differential
equations, which describes the motion of any system of point masses inter-
acting by gravitational forces, which we may refer to as Newton’s model.
The theory extends to systems of (homogeneous) spheres with 7 being the
distance between the centers of the spheres, and thus applies in particular
to our solar system consisting of one (big) sun and 9 (small) planets, as
well as a large number of moons.

Newton gave no explanation for the nature of gravitational forces, nor
the form the Inverse Square Law, for which he was criticized by Leibniz.
Maybe Leibniz was too tough: Still today, the nature of gravitational forces
and their “action at a distance” is unknown. It is conjectured that the
gravitational forces result from the exchange of certain “particles” called
“gravitons”, but little is known about the nature of such particles, or even
that they “exist”.

Newton’s model gives a very concise description of any system of bod-
ies interacting through gravitation, but there is one catch: the differential
equations are very difficult to solve by analytical mathematics expressing
the solution in an analytical mathematical formula. It is only for the very
special case of the 2-body problem that we can find such a formula, which
turns out to represent an ellipse. But already the 3-body problem presents
unsurmountable analytical mathematical difficulties.

Newton derived the solution of the 2-body problem in his Principia Math-
ematica, and thereby confirmed the laws discovered experimentally by Ke-
pler. The success with the 2-body problem rocketed Newton to instant
fame, and gave mathematics an enormous boost. It appeared that Man us-
ing mathematics could take up a competition with God and now, with no
more limits to human understanding of the world, the industrial revolution
could get started. The paradigm of our time is largely the same.

The fact that neither Newton, nor anybody else, could tackle even the
3-body problem analytically, did not take away the enthusiasm. The reason
was that by a clever use of the 2-body solution one could find approximate
solutions to e.g. our own planetary system, by first neglecting the interac-
tion between planets and then correcting for this effect. In his monumental
Mecanique Celeste Laplace made extensive computations of this form.

Today, with the computer, the differential equations of Newton’s model
are routinely solved computationally. Not by using the analytical 2-body so-
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lution, but by directly solving the differential equations in each particular
case. In principle this is done in a step-by-step procedure marching for-
ward in time using small steps: In each time step the gravitational forces
are computed from the present given positions of the bodies. Then the ac-
celerations for all bodies are computed, then the velocities and finally the
new positions are computed and used as input for the next time step. This
procedure is referred to as solving the differential equations by a “time-
stepping” method. In a certain sense computational solution of the n-body
problem is thus “easy”, at least in principle. But in practice it may require
a lot of computations, and the computational work quickly grows with in-
creasing n: in each time step we have to compute the forces between all the
bodies (there are about n?/2 such forces) and update acceleration, velocity
and position for each body, and then we have to take many time steps.
Thus, if n is large, e.g. n = 10°, then a large computer is needed.

For planetary systems, the number of bodies may not be so large, but in
molecular dynamics (see below) large numbers of molecules/atoms inter-
act in a Newton-type model, which thus represents a real computational
challenge. Further, in simulations of the formation of galazies, large num-
bers of stars interact by gravitation. So there are many n-body problems
demanding massive computations, but the rapid increase of computational
power available to many quickly expand the scope of n-body simulations.

9.2 Laplace’s Model of Gravitation

In Mecanique Celeste Laplace formulated a differential equation satisfied by
the gravitational potential corresponding to a certain distribution of mass in
space, which is referred to as Laplace/Poisson’s equation involving Laplace’s
differential operator acting on the potential with the mass density as a given
right hand side. By solving Laplace/Poisson’s equation for the potential,
one gets the gravitation force field as the gradient of the potential. Laplace
could this way show that the gravitational force generated by a point mass
satisfies the Inverse Square Law. So Laplace could give a “proof” of the
Inverse Square Law, which Newton could not, but to do this Laplace had to
assume (without being able to give a “proof”) that a gravitational potential
must satisfy Laplace/Poisson’s equation.

9.3 Molecular Dynamics

Molecular dynamics gives a model for the interaction of molecules which
is similar to Newton’s Model for gravitation, with different intermolecular
forces. Here the number of molecules may be large (remember that 1 mole
consists of 1023 molecules) so even a small volume will contain a large num-
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ber of molecules. Molecular dynamics offers new tools of simulating protein
folding which is a basic process of life, but presents formidable challenges to
modern computers. Even the molecular dynamics of ordinary water, which
serves as the environment for life processes, remains a challenge.

9.4 Einstein’s Law of Gravitation

Einstein presented an alternative to Newton’s Theory of gravitation in
Einstein’s differential equation stating that the “curvature of space-time”
is proportional to the mass density, and that the motion of a body under
gravitation follows a “shortest path geodesic” in curved space-time in a
“free fall”.

Einstein gave no explanation why the presence of mass would make space-
time curved, nor why a body would necessarily follow a geodesic.

A few analytical solutions to Einstein’s equation are known, but even to-
day computational solution remains an outstanding challenge. For example,
nobody has been able to compute the interaction of two black holes, which
could give insight to the nature of the supposed associated gravitational
waves and thus help experimental detection.

9.5 The Navier—Stokes Equations for Fluid
Dynamics

The Navier—Stokes differential equations formulated 1821-45 describe the
motion of a rich variety of incompressible fluid based on Newton’s Second
Law together with a constitutive equation stating that the shear forces are
proportional to the strain velocity (assuming the fluid to be Newtonian).
The Navier—Stokes equations are similar to a Newton model viewing a fluid
to consist of many “fluid particles” which interact by pressure and viscous
forces. The Navier—Stokes equations express the basic laws of mechanics of
conservation of mass and momentum.

There are only a few known analytical solutions to the Navier—Stokes
equations, and then only for very simple cases. In general solutions show
features of turbulent rapidly changing flow in time and space. Computa-
tional solution of the Navier—Stokes including turbulent flow remains a
main challenge today. We will come back to this topic below.

9.6 Schrodinger’s Equation

Modern Atom Physics is based on Schridinger’s equation first presented
in 1925, which describe Quantum Physics. Schrédinger’s equation may be
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viewed as a generalization of classical Newtonian mechanics, where mo-
mentum is replaced by the Laplace operator acting on a wave function
interpreted as a probability that a particle will be in a certain region of
space at a certain time. Schrodinger formulated his equation so as to ad-
mit certain wave-like solutions that he liked but did not even attempt to
try to “prove” the validity of his equations, but they seem to give precise
predictions in many cases.

Again these differential equations allow analytical solution only in a few
very simple cases such as the Hydrogen atom.

Schrédinger’s equation is particularly demanding computationally since
the number of space dimensions is equal to 3N where N is the number of
electrons/kernels. Thus already one atom with many electrons poses a very
demanding computational problem. Modern Atom Physics and Physical
Chemistry can largely be described as the science of solving Schrodinger’s
equation approximately by different approaches. The Nobel Prize of 1998
was awarded for computational methods for solving Schrédinger’s equation,
based on replacing a large number of electrons by a single electron density
thus reducing the number of space dimensions to the usual 3.

9.7 Discussion of Effectiveness

The mathematical models presented above may be viewed as key examples
of the “effectiveness” of mathematics in mechanics, physics and chemistry.
Newton’s, Navier-Stokes, Einstein’s and Schrédinger’s equations are all
differential equations which “describe” fundamental aspects of the world.
More precisely, the equations express in concise mathematical form certain
basic principles of physics. For example, Newtons equations combine New-
ton’s Second Law ma = F with the Inverse Square Law F = Gmima/r?,
and Navier—Stokes equations express Newton’s Second Law together with
an equation coupling viscous forces to velocity gradients.

Undoubtedly, all these mathematical models may be viewed as being
extremely “effective” in the sense that the models can be specified on a
couple of lines and yet seem to describe a very wide variety of different
physical scenarios. One may express this as a (remarkable) “effectiveness
in formulation”. The extreme variant of this point of view is the current
quest for a “basic equation for everything” combining the 4 basic forces of
physics (strong and weak interactions, electromagnetic and gravitational
forces) in one single model of string theory.

But there is a hook, a serious hook: all the equations are, except in very
few special cases, impossible to solve by analytical mathematical methods.
Apparently, we are thus able to write down equations which seem to de-
scribe physical realities, but we seem to be unable to solve the equations,
at least by analytical mathematical methods. Of course this may make us
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question the “effectiveness”, since after all it is solutions that we are af-
ter. We may ask what the value of a mathematical model in the form of
a differential equation may be, if we cannot solve the differential equation,
except in a few very special cases. The main use of a mathematical model
is ultimately to make predictions, and predictions are made by solving the
equations of the model.

The net result is that we may seriously question the “effectiveness” of
the presented mathematical models, which usually are presented as key
examples of the “effectiveness of mathematics in the natural sciences”.
Apparently, the models are “effective” from the point of view of economy
of formulation as a certain set of differential equations expressing basic laws
of physics, but the models are not very “effective” from the point of view
of actually solving the equations to get solutions.

So, maybe the “effectiveness of mathematics” is largely an illusion. If so,
the paradox and mystery of the “unreasonable effectiveness” would simply
disappear.

We sum up: If we have a phenomenon which can be described by some
basic laws, then there is a chance that we can find a corresponding math-
ematical model expressing the basic laws typically as a set of differential
equations. There are many such phenomena, but there are also many phe-
nomena where the basic laws seem to be missing or not fully known. This
is often the case in social sciences, and this is the reason why mathematics
is not considered to be very “effective” in these areas.

To give some further light on this aspect we take a look at a mathematical
model used routinely all over the world with results presented each day
along with the news on television.

9.8 Weather Prediction

We are all familiar with the weather report on TV: A prediction of the
development of the weather in some area for some period of time is made,
and usually the prediction is displayed in a movie showing the evolution
of zones of high and low pressure along with the wind speed, the expected
amount of rain or snow together with the variation of temperatures. The
time scale may run from hours for local reports around an airport, to a day
for a region, to long time predictions of e.g. global warming. But how is the
simulation made? Well, of course by solving a set of differential equations
supposedly modeling the atmosphere. Some of the differential equations in
the model express basic conservation laws (of e.g. mass and momentum),
while others are constitutive equations modeling for example the effect of
clouds on heat radiation. We may know the basic conservation laws, but
the constitutive equations have coefficients which we have to determine.
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Thus, in many cases we may not know all the equations we want to
solve in a simulation, so a large part of the effort will have to go into first
determining what equations to solve, typically determining various coeffi-
cients, like heat conductivity or viscosity. Again this may be approached by
computation, where we compute with a certain set of coefficients, compare
the corresponding computed solution to observations, and then change the
coefficients to get a better match.

So, also in science, we may have to struggle hard (compute) to find the
equations to solve in a simulation. The “effectiveness in formulation” may
then become as questionable in natural science as in economy or social
science.
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FIGURE 9.1. Table from Kepler’s Ephemerides: Kepler speculated that the
weather was affected by planetary influences.






10
Do We live in “The Best of Worlds”?

The Best World has the greatest variety of phenomena regulated by
the simplest Laws. (Leibniz)

Newton’s classical mechanics, Schrodinger’s quantum mechanics, Navier—
Stokes fluid mechanics and Einstein’s cosmology are all examples of math-
ematical models in the form of differential equations expressing basic laws
such as conservation of mass, momentum or energy.

Each differential equation describes a physical world on a certain scale
ranging from the atomic scale of Schrédinger’s equation to the cosmological
scale of Einstein’s equation.

Each equation may be viewed as a wonderful example of the “unreason-
able effectiveness of mathematics in the natural sciences” capturing a large
variety of phenomena in one differential equation expressing a basic prin-
ciple. Each equation may be taken as evidence that we live in the “Best of
Worlds” following the idea of Leibniz that a best possible world would be
one of maximal complexity governed by the simplest laws.

The genetic code seems to support Leibniz idea: the complete design of
a living being, from the amoeba to homo sapiens is encoded in a genome
consisting of a set of chains of amino acids contained in the kernel of each
cell. This startling idea of the Creator is now being uncovered: the recording
of the human genome was completed in 2000 and its functionality is now
(slowly) being uncovered. The process is like first copying a very thick book
in a completely unknown language about a completely unknown subject
(which may be quite easy with a good copying machine), and then trying
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FIGURE 10.1. The first page of the manuscript published in 1684, where Leibniz
introduced calculus to describe basic aspects of his “Best of Worlds”.

to understand what the book says (which could be infinitely much more
difficult).

Also Stephen Wolfram, the creator of the mathematical software Math-
ematica, follows the line of thought of Leibniz in his latest book A New
Kind of Science. Wolfram there plays with small computer codes express-
ing some simple law of interaction which generate interesting patterns, like
primitive forms of life.

Going back to mechanics and physics, the worlds of Newton, Schrédinger,
and Einstein thus appear to be “Best Possible”, in a way. But we know that
there is a catch, a hook: If the corresponding world has maximal complex-
ity, then solutions to the wonderful equations of Newton, Schrédinger and
Einstein may be very complex. And that is the catch: a complex solution
is not easy to capture in an analytical mathematical formula. So with only
analytical mathematics as a tool we get quickly stuck: We simply can’t
solve the equations, and their secrets remain closed to us.

So what is then the use of an equation, to which we can’t find solutions?
It is like a riddle without an answer. Maybe amusing, but what is the use
of it?

Or, is it indeed possible to find some kind of solutions? Like in our lives:
It does not seem easy to tell beforehand what expression our genome will
take as if we had an analytical solution given as a birth present (which our
insurance company certainly would like to have), but nevertheless somehow
we seem to live our lives one way or the other, day after day. Or the other
way around: maybe it is the genome that lives its life and our own life is
some part of it, which we cannot understand.
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The Reasonable Effectiveness of
Computational Mathematics

So

solve

When, several years ago, I saw for the first time an instrument which,
when carried, automatically records the number of steps taken by
a pedestrian, it occurred to me at once that the entire arithmetic
could be subjected to a similar kind of machinery so that not only
addition and subtraction, but also multiplication and division could
be accomplished by a suitably arranged machine easily, promptly
and with sure results. .. For it is unworthy of excellent men to lose
hours like slaves in the labor of calculations, which could safely be
left to anyone else if the machine was used. .. And now that we may
give final praise to the machine, we may say that it will be desirable
to all who are engaged in computations which, as is well known, are
the mangers of financial affairs, the administrators of others estates,
merchants, surveyors, navigators, astronomers, and those connected
with any of the crafts that use mathematics. (Leibniz)

there we stand and look at the equations, and don’t know how to
them. Or do we know? Yes, of course we can always try to compute

the solutions. Let’s see what we can do.

We thus ask the question if we can compute solutions to the equations

of Newton, Schrodinger and Einstein? Can we do that? Yes, and no!

For some problems, we already have efficient methods to compute so-
lutions, for other problems we may expect to develop new methods that
would produce solutions, while other problems seem very difficult or im-
possible to solve computationally. We may phrase this as “the reasonable

effectiveness of computational mathematics”.
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Thus: computational mathematics is reasonable in the sense that we can
solve reasonably many problems with a reasonable amount of computa-
tional work. That is, we cannot solve all problems using computational
mathematics (that would have been unreasonable), but some problems
(which is more reasonable).

Let’s give some key examples (to which we will return in more detail
below for the reader who wants to know a bit more).

11.1 The Solar System: Newton’s Equations

The evolution of our solar system is accurately described by Newton’s equa-
tion. Knowing the positions of all the planets and their moons at a given
moment (say time ¢ = 0 which may be today), we can compute the posi-
tions for some length of time ahead (say for ¢ < T where T is a final time)
by solving Newton’s equations by time stepping: we start knowing the ini-
tial positions at ¢ = 0 and compute their positions at time ¢t = k, where k
is a positive time step like 1 hour, 1 day or even 1 year. We then get new
initial positions at ¢ = k and repeat the procedure to get new positions at
time ¢ = 2k, and so on. We would then advance our solar system like a big
Clock, with each time step being a “tic” by the Clock.

But, in each time step we would make a small error in the computa-
tion; we cannot compute the positions exactly, since we are using finite
precision (finite number of decimals) in the computation, and since the
computational method also adds an error (which would be non-zero even if
we could compute with infinite precision). So in each time step we make a
little error and after many time steps, all the little errors may add up to a
big error, and the computation gives completely false results. We also have
errors from data; from errors in measured initial positions, from errors in
estimated values of the masses of the planets and moons, and also an error
from a lack of precise knowledge of the universal gravitational constant G
entering the equations. Altogether, we have errors from discretization (time
stepping), round-off (finite precision arithmetics), and data.

When we solve Newton’s equations, we notice that different celestial ob-
jects show different error growth: For example, to computationally predict
the position of our moon over a period of more than thousand years would
require higher accuracy of data than the current knowledge of G up to 5-6
decimal places. On the other hand, we would see smaller error growth in
the position of e.g. Pluto. So, we may predict the evolution of the solar
system over a period of thousands or million years, depending on what
information or output from the computations we want.

So, solving Newton’s equations computationally is “Reasonably Effi-
cient” but not more.
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11.2 Turbulence: Navier—-Stokes Equations

Turbulence is viewed as one of the main mysteries of Newtonian Mechan-
ics. We know (firmly believe) that the motion of an incompressible viscous
flow is governed by Navier—Stokes equations which express Newton’s Sec-
ond Law (conservation of momentum) and incompressibility (conservation
of mass). If the viscosity is small (the Reynolds number is large), then
we expect to see turbulent (highly fluctuating) solutions to Navier—Stokes
equations. If we could solve the equations analytically, we could uncover
the secret of turbulence, but we can’t: only very few very simple (non-
turbulent) analytical solutions are know (and these are probably all that
ever may be known).

Again we have to resort to computational methods: And yes, we can solve
the Navier—Stokes equations to a certain extent computationally. There
are aspects of turbulent flow (outputs), which are computable and other
aspects which appear to be “uncomputable”. For example, we may compute
the drag coefficient cp of our car, which is a mean value in time of the
momentary drag force D(t), which is the total force from the air acting on
the body of the car at time ¢. But we may not compute D(t) accurately at
a given time ¢, because D(t) is rapidly fluctuating. Neither can we measure
D(t) and thus we get the message that this information is forever hidden to
us. But we can accurately compute the mean value in time of D(t) which
is the drag coeflicient c¢p. We give more details below.

So again, computational solution of the Navier—Stokes equations is rea-
sonable in the sense that we can compute some outputs of turbulent flow
(typically certain mean values) but not point values in space or time.

11.3 Schrodinger’s Equation

The Schrodinger equation is the basic equation of Quantum Mechanics and
differs essentially from e.g. Navier—Stokes equations. First of all the un-
known is a certain wave function interpreted as the probability of a certain
distribution of atoms and electrons. Second, the number of space dimen-
sions is equal to 3N where NN is the number of electrons. The idea is that
in a sense each electron has its own copy of three dimensional space and
we then get an incredibly rich world of high dimension. The result is that
only the very simplest case of the Hydrogen atom with one electron allows
an analytical solution.

Since we have to discretize in space to solve the Schrodinger equation
computationally, we also quickly get drowned by the large number of di-
mensions: we quickly fill up even the largest computer and get nowhere.
The only chance is to come up with clever computational methods where
we do not seek to follow each individual electron but rather work with one
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single electron density. The difficulty with this approach is that we don’t
have an equation to solve for the electron density, but first have to construct
the equation solve.

So either, we have an equation (Schrodinger’s equation), which we cannot
solve computationally, or we aim for a solvable equation, which we how-
ever don’t know what it could be. As we said, to find the equations to solve
computationally itself may come out as a result of a computational pro-
cedure: To compute the solution of an equation, we first have to compute
the equation! Again, we may view this as something in fact “reasonable”.
It would be unreasonable to expect that the equation was given to us by
God, and our task was “just” to solve it. Life is not simple: It is not just
to “get married and be happy”, we first have find someone to marry.

11.4 Einstein’s Equation

Einstein’s equation describing the large scales of our Universe with grav-
itation as the main force, turns out to be very much more difficult to
solve computationally than the corresponding simpler model in the form of
Laplace’s equations. And of course as usual, analytical solution is impossi-
ble except in a few simple situations. As of now, nobody seems to be able
to computationally solve Einstein’s equation accurately in any generality.
But presumably it will be possible to get around the difficulties. A good
aspect is that the dimension is 4 (space and time), so it should be possible
to discretize. Main difficulties seem to come from a lack of understand-
ing what the equations really mean and how they should be formulated in
a computational approach. Also, what initial and boundary conditions to
pose present difficulties.

Following our idea that computational mathematics is reasonably effi-
cient, we should expect some progress soon concerning computational so-
lution of Einstein’s equation. This could be expected to give new insights
concerning black holes and gravitational waves, which physicists believe
exist but which are difficult to observe.

11.5 Comparing Analytical and Computational
Solution Techniques

In Chapter 12 we touch the difference between classical music, where the
set of notes to be played is given, and jazz music where improvisation is
an important feature. Many analytical solutions are like the wonderful in-
ventions by Bach, something that we (with a lot of practice) can reproduce
more or less successfully (or even “interpret” if we are professionals), but
which we cannot write down ourselves.
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Analytical solution is thus “closed” in the sense that normally we can
only hope to copy what someone more clever than ourselves has already
achieved. Calculus books are filled with “tricks”, which the teacher has
learnt to master by teaching the same course many times. It is like following
an already existing prepared path in the jungle. This makes the teacher
very important as the source to the secret of where to go next, following
the prepared path (which we don’t see very well). The student thus gets a
passive role, and his own initiatives usually lead astray: the problem is to
find the next sign dropped by the teacher indicating where to go.

The basic reason is that analytical solutions are sparse and difficult to
find. Unless you carefully set up the problem just right, no one will be able
to find a solution. So analytical solutions may be viewed as valuable gems,
which are not easy to find.

On the other hand, by computation you can solve almost any problem,
more or less, and with more or less effort. And you don’t have to get stuck
completely: you have your good friend the computer which can help you.
To produce an analytical solution you just have your brains and paper and
pencil, so you are alone.

Thus, computational mathematics is “open” in the sense that whatever
problem you approach you can at least do something. Like in jazz music: if
you only know (or feel) the chords, you can make some music, even if it is
not on the level of Bach (or a Master of Improvisation like Keith Jarrett.)

Of course, viewing mathematics as a training ground for problem solving,
it may be very rewarding to learn how to use computational techniques,
because you don’t get stuck as much, and always getting stuck does not
build confidence (very important in problem solving), but the contrary
(which is very destructive).

11.6 Algorithmic Information Theory

Suppose you compare the length of a computer program with the “infor-
mation” that may come out by running it on the computer. The computer
program could be one of Stephen Wolfram’s little codes that produce com-
plex patterns, or an implementation of a computational method for solving
the Navier—Stokes equations, which produces a turbulent complex solution.
In both cases the computer program could be very short. In the Navier—
Stokes case this would reflect that the Navier—Stokes equations themselves
can be written down very concisely (2 lines) and that it is possible to solve
them computationally using a numerical method that also can be written
down in a few lines. Maybe not the most efficient program, but still capable
of producing a complex solution.

So in both cases, the computer program may be very short, but the result
that comes out very long in the sense that it takes a lot of memory to store
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the entire evolution in space and time of the solution. The program may
thus be a few lines long, while the solution may take 2 Gb to store. And
of course, to produce the solution we have to put in a lot of computational
work.

This is similar to the genetic code (see below), which is quite short in
terms of storage, while the entire life that may come out from the genetic
code may be very rich and would require a lot of storage to record. And
of course to express the genetic code in the form of real life, a lot of work
would have to be added (and energy consumed).

If the code is short but the result is long, we may say that there is some
structure or order (Life is short, Art is long). If the code is as long as the
result, this may be viewed as evidence of randomness.

So the Best World may be viewed as a complex world regulated by a
short computer program. Viewing the Creator of such a Best World as a
programmer, this would indicate that the Creator is a good programmer,
with access to a lot of computational resources.

This also couples to the concept of depth of information, where the depth
measures the amount of work required to produce a certain result or answer.
The answer may be short like a “no” (or “42”) as a result of a very long
thought process (or computation), e.g. in a proposal to marriage, and may
thus be of considerable depth. Or a very short one of little depth as a
response to the question “Do you still smoke?” or “Is two plus two equal to
five?”. One may say that Fermat’s Last Theorem has a considerable depth,
taking the length of its proof as a measure, with a very short answer.

Further, if a short computer program is capable of producing a complex
output when executed on some short input data, it may be used to transmit
the output data in an efficient way. Instead of first computing the output at
location A and then sending the output to location B, which may require
sending very large amounts of data, one would send the short program
together with the short input from A to B, and then execute the program
at B to produce the output.

11.7 How Smart is an Electron?

Somehow each electron in a molecule has to find out what to do, by some-
how “solving” its own copy of the Schrédinger equation. So “solving” in
some sense has to be “simple”, since after all a single electron must have
a limited intelligence. This indicates that there may be a simple computer
program for the computational solution of Schrédinger’s equation.
Arguing this way, the world as it evolves, seems to find its way in a mas-
sive “physical computation” with many interacting particles each one solv-
ing its own equation, which the physicists may say ultimately boils down to
an “exchange of something”. A process which maybe could be modeled in
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a digital computation with instead exchange of digits. The massiveness of
the computation with many particles interacting would then be what opens
to complexity. A short computer program applied in a massively parallel
computation would produce the complex Best World.

11.8 The Human Genome Project

In 2003 the Human Genome Project was completed by obtaining the se-
quence of the 3 billion base pairs making up the human genome, or genetic
code, distributed over about 30,000 genes. The order of the bases A, T, C
and G spells out the exact instruction needed to maintain and reproduce a
living organism, whether it is a human being, a tree or a microbe. Each cell
of the organism has a copy of the complete genome. The genome can be
viewed as a computer code which generates a certain living organism when
the code is executed many times in many cells. The code is very compact
(less than 1 Gb of storage), but its expression very complex, thus meeting
Leibniz criterion of a Best World.

Algorithmic information theory is the result of putting Shannon’s
information theory and Turing’s computability theory into a cock-
tail shaker and shaking vigorously. The basic idea is to measure the
complexity of an object by the size in bits of the smallest program
for computing it. (G. J. Chaitin)
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Jazz/Pop/Folk vs. Classical Music

Music is the pleasure the human soul gets from counting, without
knowing it. (Leibniz)

We present another analogy taken from the area of music. We know that
there are many profound connections between music and mathematics go-
ing way back to the Pythagoreans in old Greece, who discovered the math-
ematics of musical scales and harmony as simple fractions such as 3/2 and
9/4.

We know that there is jazz/pop/folk music and classical music, which
are quite different even if they share elements of musical scales/harmony
and rhythm. In jazz music the basic structure of a tune being played is de-
termined beforehand in the form of a basic chord progression and rhythmic
pattern (e.g. a 12 bar blues pattern), but the details of the music (melody,
harmony and rhythm) is created during performance in improvisations on
the given harmonic/rhythmic structure. One may view the improvisation
as a computation being performed during performance on a certain set of
data with certain (partly random) decisions being taken as the improvisa-
tion develops.

In classical music on the other hand, the full score (set of notes) is set
beforehand. The individual members of a symphony orchestra do not have
the freedom to improvise and play what they feel to play for the moment
(even if it would be harmonically and rhythmically correct), but will have
to play the given notes. The conductor has a freedom of interpretation in
tempo and phrasing which may be different from one performance to the
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next according to inspiration. But the given set of notes have to be played
according to the partiture created by the composer.

We may view computational mathematics as sharing a quality of jazz mu-
sic: a computation follows an algorithm which prescribes a certain structure
of the computation, like a chord progression, but each run of the compu-
tation may be done with new data and a new result will come out. The
computation may be designed to simulate the evolution of the atmosphere
to give input to a weather prediction report, and there may even be random
elements in the computation reflecting lack of data or strong sensitivity to
small disturbances.

On the other hand, the most essential element of pure mathematics as
a science is considered to be a proof of a theorem created by an individ-
ual mathematician, which may be viewed as a kind of score created by an
individual composer. Often the theorem is given a name memorizing the
mathematician who first created a proof of that theorem. For example we
have: Banach’s Fixed Point Theorem, Brouwer’s Fixed Point Theorem, Lef-
schetz’ Fixed Point Theorem, Schauder’s Fixed Point Theorem, Kakutani’s
Fixed Point Theorem, ...

It appears that jazz/pop/folk music reaches many more people than clas-
sical music, which also get large audiences when the classics are performed
but often very few when contemporary music is played. Analogously, we all
meet many products of computational mathematics in our everyday life,
while the activities of pure mathematics more and more seems to develop
into activities understood by very small groups of specialists.

Of course, the analogy presented only captures, at best, some truth and
does not describe the whole picture. Some of the reviewers of the book did
not not understand the message of this chapter. How about you?

FIGURE 12.1. Charlie Parker, a genius of improvisation.
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The Right to Not Know

To my knowledge the President had no prior knowledge of the bug-
ging plan, and such knowledge by Nixon, would be difficult to believe.
(Nixon’s campaign Deputy Director Jeb Stuart Magruder, testifying
under oath 1972)

To not know, to not be informed, is a trait of political life which we all have
met. The Swedish Prime Minister did not know anything about bribes in
weapons deals between Sweden and India, which caused a severe govern-
ment crisis in India. Nixon did not know anything about Watergate, Kohl
did not know about the finances of his electoral campaigns, and Blair was
not aware of missing proofs of the existence of weapons of mass destruction
in Iraq. Or did they know? We don’t know for sure.

Also in science, denial and ignorance may be a powerful tool. By simply
ignoring new facts, an old paradigm may be upheld for yet some period of
time. Ignorance is based on a (possibly silent) agreement to ignore. Like in
the H.C. Andersen story about the Emperors New Clothes, where every-
body agreed to ignore the fact that the Emperor was naked, except a little
boy. ..

It appears that mathematicians have the right to be ignorant about
mathematics didactics, and experts of mathematics didactics have the right
to not know too much about contemporary research in mathematics. And
both groups seem to have the right to not be well informed about com-
putational mathematics. Similarly, the Mathematics Delegation seems to
have the right to pretend that computational mathematics does not exist.

But there are hooks of course: to pretend to not know, while knowing, or
to be truly ignorant, may be a risky tactic. In business, it would certainly be
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wiser to try to follow what the other actors on the market are doing, than
to simply forget about their existence. And the same rule should apply to
science: it would seem wiser to be informed about what your competitors
are doing, than to know nothing. At best this knowledge could give you
the good feeling of knowing that you are ahead, and if you see that you are
behind, you’d better catch up.

In an open society with freedom of speech, there are limits to what can
be ignored: there are digging journalists and dogged scientists, which will
simply not disappear even if ignored for a long time.

We have written several debate articles in the Swedish daily press about
the need of reform in mathematics education. We have met very positive
response from many, but none at all from pure mathematics and mathe-
matics didactics. In our last debate article in Goteborgs-Posten on March
6 2004 (see Appendix) we suggested that the lack of reaction could reflect
a lack of knowledge of computational mathematics, i.e., a genuine lack of
ideas of how to respond to what we were saying. And we did not get any
reaction indicating that this was wrong.
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An Agenda

...there is no study in the world which brings into more harmonious
action all the faculties of the mind than [mathematics], ...or, like
this, seems to raise them, by successive steps of initiation, to higher
and higher states of conscious intellectual being. .. (Sylvester 1814—
1897)

We propose the following agenda:

e Create a scientific basis of mathematics including both pure and com-
putational mathematics.

e Improve the interaction between pure/computational mathematics
and didactics of mathematics.

e Develop reformed mathematics educations on all levels based on the
new scientific basis.

Needless to say, this agenda is demanding and would need contributions
from many to get an impact. Our Body&Soul Project represents a small
initial effort in this direction.

The agenda is short, and it should be expanded and be made more de-
tailed. Here we only give a few comments:

14.1 Foundations of Computational Mathematics

The famous mathematician Stephen Smale, Fields Medalist 1966, has ini-
tiated the formation of the organization Foundations of Computational
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Mathematics FoCM which “supports and promotes research on foundations
of computational mathematics, and fosters interaction among mathemat-
ics, computer science and other areas of computational science through its
conferences, workshops and publications”. The FoCM series of conferences
shows a development from an initial enthusiasm (FoCM 95) to identify the
“foundations”, to a realization (FoCM 02) that it was difficult to really
properly identify them.

Our own experience from our research and from writing several books,
and from participating in FoCM 95/02, is that the foundations of com-
putational mathematics are the same as those of constructive calculus as
presented e.g. in Body&Soul. Thus, if we take away the non-constructive
aspects of calculus, then what remains is constructive calculus which to-
gether with the computer gives us computational mathematics. This means
that among the foundations of computational mathematics we find com-
puter arithmetic with real numbers, Banach’s fixed point theorem, New-
ton’s method, Euler’s method, Gaussian elimination, the Conjugate Gra-
dient method and Galerkin’s method.

14.2 New Possibilities for Mathematics Education

We have remarked above on, from our perspective, a missing interaction
between mathematics didactics and computational mathematics. We be-
lieve that computational mathematics, or constructive calculus, opens new
possibilities in the teaching of mathematics, and thus should open a new
interesting and fruitful field of mathematics didactics. Until now we have
seen little exploitation of these new possibilities. We hope that this lit-
tle book can help to stimulate an interest from mathematics didactics in
computational mathematics.
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15
A Very Short Calculus Course

Mathematics has the completely false reputation of yielding infallible
conclusions. Its infallibility is nothing but identity. Two times two is
not four, but it is just two times two, and that is what we call four
for short. But four is nothing new at all. And thus it goes on in its
conclusions, except that in the height the identity fades out of sight.
(Goethe)

15.1 Introduction

Following up on the general idea of science as a combination of formulating
and solving equations, we describe the bare elements of this picture from
a mathematical point of view. We want to give a brief glimpse of the main
themes of Calculus that will be discovered if we work through the volumes of
Body&Soul. In particular, we will encounter the magical words of function,
derivative, and integral. If you have some idea of these concepts already,
you will understand some of the outline. If you have no prior acquaintance
with these concepts, you can use this section to just get a first taste of
what Calculus is all about without expecting to understand the details at
this point. Keep in mind that this is just a glimpse of the actors behind
the curtain before the play begins!

We hope the reader can use this chapter to get a grip on the essence of
Calculus by reading just a couple of pages. But this is really impossible in
some sense because calculus contains so many formulas and details that it
is easy to get overwhelmed and discouraged. Thus, we urge the reader to
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browse through the following couple of pages to get a quick idea and then
return later and confirm with an “of course”.

On the other hand, the reader may be surprised that something that is
seemingly explained so easily in a couple of pages, actually takes several
hundred pages to unwind in this book (and other books). We don’t seem
to be able give a good explanation of this “contradiction” indicating that
“what looks difficult may be easy” and vice versa.

15.2 Algebraic Equations
There are algebraic equations of the form: find Z such that

f(@) =0, (15.1)

where f(z) is a function of z. Recall that f(z) is said to be a function of
if for each number x there is a number f(z) assigned.

We call T a root of the equation f(x) = 0 if f(Z) = 0. The root of
the equation 152 — 10 =0 is & = % The positive root = of the equation
2?2 — 2 =0 is equal to v/2 &~ 1.41. There are different methods to compute
a root Z satisfying f(z) = 0 such as the Bisection Method and Newton’s
Method.

15.3 Differential Equations

We will also consider the following differential equation: find a function z(t)
such that for all ¢

Z'(t) = f(1), (15.2)

where f(t) is a given function, and 2’(¢) is the derivative of the function z(t).
This equation has several new ingredients. First, we seek here a function
x(t) with a set of different values 2(t) for different values of the variable ¢,
and not just one single value of z like the root the algebraic equation 22 = 2
considered above. x = z(y) = {%. Secondly, the equation 2'(t) = f(t)
involves the derivative 2/(t) of z(t), so we have to investigate derivatives.
A basic part of Calculus is to (i) explain what a derivative is, and (ii)
solve the differential equation z’(t) = f(t), where f(¢) is a given function.
The solution z(t) of the differential equation z’(t) = f(t), is referred to as
an integral of f(t), or alternatively as a primitive function of f(t). Thus,
a basic problem of Calculus is to find a primitive function z(t) of a given
function f(t) corresponding to solving the differential equation z’(t) = f(¥).
We now attempt to explain (i) the meaning of (15.2) including the mean-
ing of the derivative 2/(t) of the function x(t), and (ii) give a hint at how
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to find the solution x(t) of the differential equation z’(¢t) = f(t) in terms
of the given function f(t).

As a concrete illustration, let us imagine a car moving on a highway. Let
t represent time, let x(t) be the distance traveled by the car at time ¢, and
let f(t) be the momentary velocity of the car at time ¢, see Fig. 15.1.

FIGURE 15.1. Highway with car (Volvo?) with velocity f(t) and travelled dis-
tance z(t).

We choose a starting time, say ¢ = 0 and a final time, say t = 1, and we
watch the car as it passes from its initial position with z(0) = 0 at time
t = 0 through a sequence of increasing intermediate times tq, ts,..., with
corresponding distances z(t1), x(t2),..., to the final time ¢t = 1 with total
distance x(1). We thus assume that 0 = tg < t; < -+ < tpg < by <
ty = 1 is a sequence of intermediate times with corresponding distances
x(tn) and velocities f (), see Fig. 15.2

FIGURE 15.2. Distance and velocity at times ¢,,—1 and t,,.

For two consecutive times ¢,,_1 and t,,, we expect to have
m(tn) ~ x(tn—l) + f(tn—l)(tn - tn—l)a (153)

which says that the distance x(¢,) at time ¢, is obtained by adding to the
distance x(t,—1) at time t,_; the quantity f(tn—1)(tn — tn—1), which is
the product of the velocity f(¢t,—1) at time ¢,—1 and the time increment
t, — tn,—1. This is because

change in distance = average velocity X change in time,

or traveled distance between time t,_1 and t,, equals the (average) velocity
multiplied by the time change ¢, — t,,—1. Note that we may equally well
connect x(t,) to x(t,—1) by the formula

2(tn) ~ 2(ty_1) + f(tn)(tn — tn_1), (15.4)
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corresponding to replacing ¢,,—1 by ¢, in the f(t)-term. We use the approx-
imate equality & because we use the velocity f(t,—1) or f(¢,), which is not
exactly the same as the average velocity over the time interval from ¢, _;
to t,, but should be close to the average if the time interval is short (and
the velocity does not change very quickly).

EXAMPLE 15.1. If 2(t) = ¢, then z(t,) —2(tn_1) =2 —t2_| = (t, +

tn—1)(tn — tn—1), and (15.3) and (15.4) correspond to approximating
the average velocity (t,, + t,—1) with 2¢,,_1 or 2¢,, respectively.

The formula (15.3) is at the heart of Calculus! It contains both the
derivative of z(t) and the integral of f(t). First, shifting x(¢,—1) to the left
and then dividing by the time increment ¢,, — ¢,,_1, we get

x(tn) — x(tn-1)

tn — tn_l ~ f(tnfl) (155)

This is a counterpart to (15.2), which indicates how to define the derivative
#'(t,—1) in order to have the equation z’(t,_1)) = f(t,—1) fulfilled:

x(tn) — x(tn_1) .

/t_ ~
x(nl) tn_tnfl

(15.6)
This formula says that the derivative z’(t,—1) is approximately equal to
the average velocity
x(tn) — z(tn-1)
tn - tnfl '

over the time interval between t,_; and t,. Thus, we may expect that
the equation z/(t) = f(t) just says that the derivative x'(t) of the traveled
distance x(t) with respect to time t, is equal to the momentary velocity f(t).
The formula (15.6) then says that the velocity «'(t,—1) at time ¢,,_1, that is
the momentary velocity at time t,,_1, is approximately equal to the average
velocity over the time interval (¢,,—1,t,). We have now uncovered some of
the mystery of the derivative hidden in (15.3).

Next, considering the formula corresponding to to (15.3) for the time
instances t,,_o and t,,_1, obtained by simply replacing n by n—1 everywhere
in (15.3), we have

(tp—1) = x(tn_2) + f(tn—2)(tn_1 — tn_2), (15.7)
and thus together with (15.3),
~x(tn—1)
2(tn) = x(tn—2) + f(tn—2)(tn-1 = tn2) +f(tn-1)(tn —tn-1).  (15.8)
Repeating this process, and using that x(ty) = x(0) = 0, we get the formula

z(tn) = Xn = f(to)(tr —to) + f(t1)(t2 — t1) + -
+ f(tn72)(tn71 - tn72) + f(tnfl)(tn - tn71)~

(15.9)
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ExaMPLE 15.2. Consider a velocity f(t) = 1L+t increasing with time
t from zero for t = 0 towards one for large t. What is the travelled
distance z(t,) at time ¢, in this case? To get an (approximate) answer
we compute the approximation X,, according to (15.9):

tq

te) =~ X, = ty —t 2 (ta—t
z(tn) 1+t1(2 1)+1+t2(3 2) +
tn72 tnfl
—(tp—1 — tp— —(tp —tn_1)-
g 2t T v
With a “uniform” time step k = t; — t;_; for all j, this reduces to
k 2k
)~ Xp=—k+——Fk+---
#(tn) A L

n (n—2)k k (n—1)k
14+ (n—2)k 1+ (n—1k
We compute the sum for n = 1,2,.., N choosing k = 0.05, and plot the
resulting values of X,, approximating z(t,) in Fig. 15.3.

velocity f(t) =t/ (1+1) travelled distance x(t)

0.5 0.35
0.3

0.4
0.25
0.3 02

= ¢

02 0.15
0.1

0.1
0.05
0 0

0 02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time t time t

FIGURE 15.3. Travelled distance X, approximating z(t) for f(t) = l%_t with
time steps k = 0.05.

We now return to (15.9), and setting n = N we have in particular
z(1) =z(tn) = f(to)(tr — to) + f(t1)(t2 — 1) + -+
+f(tn—2)tNn—1 —tn—1) + f(tn_1)(tN —tN-1),

that is, z(1) is (approximately) the sum of the terms f(t,—1)(tn — tn—1)
with n ranging from n = 1 up to n = N. We may write this in more
condensed form using the summation sign ¥ as

N
(E(l) ~ Z f(tnfl)(tn - tn71)7 (1510)
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which expresses the total distance x(1) as the sum of all the increments of
distance f(tn—1)(tn —tn—1) for n =1,..., N. We can view this formula as a
variant of the “telescoping” formula

=0 =0
(1) =z(ty) —x(ty-1) + z(tn_1) —z(tn_2) + x(tny—2) -
=0
—+ 7x(t1) —+ .’ﬂ(tl) 7£E(t0)
= z(ty) —x(tnv=1) + x(tn-1) —x(tn—2) +x(tn—2) - — x(t1)
~f(tn—1)(tN—tn—1) ~f(tn—2)(tN—1—tNn_2)

+ .1'(t1) — x(to)
—_————
~f(to)(t1—to)

expressing the total distance x(1) as a sum of all the increments z(t,) —
x(tn—1) of distance (assuming x(0) = 0), and recalling that

x(tn) - l‘(tnfl) ~ f(tnfl)(tn - tn71)~

In the telescoping formula, each value x(t,), except z(ty) = z(1) and
x(tp) = 0, occurs twice with different signs.
In the language of Calculus, the formula (15.10) will be written as

2(1) = /01 F(t)dt, (15.11)

where ~ has been replaced by =, the sum > has been replaced by the
integral [, the increments ¢, — ¢,—1 by dt, and the sequence of “discrete”
time instances t,,, running (or rather “jumping” in small steps) from time 0
to time 1 corresponds to the integration variable t running (“continuously”)
from 0 to 1. We call the right hand side of (15.11) the integral of f(t) from
0 to 1. The value x(1) of the function z(t) for ¢t = 1, is the integral of f(t)
from 0 to 1. We have now uncovered some of the mystery of the integral
hidden in the formula (15.10) resulting from summing the basic formula
(15.3).

The difficulties with Calculus, in short, are related to the fact that in
(15.5) we divide with a small number, namely the time increment ¢, —
tn—1, which is a tricky operation, and in (15.10) we sum a large number
of approximations, and the question is then if the approximate sum, that
is, the sum of approximations f(t,—1)(tn — tn—-1) of z(t,) — z(tn—1), is a
reasonable approximation of the “real” sum z(1). Note that a sum of many
small errors very well could result in an accumulated large error.

We have now gotten a first glimpse of Calculus. We repeat: the heart is
the formula

-T(tn) ~ x<tn71) + f(tnfl)(tn - tnfl)
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or setting f(t) = /(t),

2(ty) ~a(tp_1) + 2 (tho1)(tn — tn_1),

connecting increment in distance to velocity multiplied with increment in
time. This formula contains both the definition of the integral reflecting
(15.10) obtained after summation, and the definition of the derivative x'(t)
according to (15.6) obtained by dividing by t,, — t,—1.

15.4 Generalization

We shall also meet the following generalization of (15.2)

() = f(z(t),t) (15.12)

in which the function f on the right hand side depends not only on ¢ but
also on the unknown solution z(t). The analog of formula (15.3) now may
take the form

2(tn) = x(tn-1) + f(@(tn-1), tn1)(tn — tn1), (15.13)

or changing from ¢,,_1 to ¢, in the f-term and recalling (15.4),

2(tn) = x(tp—1) + f(@(tn) tn)(tn — tn-1), (15.14)

where as above, 0 =ty <t; < -+ < tp_1 < tp--- <ty =1 is a sequence
of time instances.

Using (15.13), we may successively determine approximations of x(t,)
for n = 1,2,..., N, assuming that x(to) is a given initial value. If we use
instead (15.14), we obtain in each step an algebraic equation to determine
x(ty) since the right hand side depends on z(t,,).

In this way, solving the differential equation (15.12) approximately for
0 < t < 1 is reduced to computing x(t,) for n = 1,..., N, using the ex-
plicit formula (15.13) or solving the algebraic equation X, = X (t,-1) +
F(Xn,tn)(tn — tn—1) in the unknown X,,.

A basic example is the differential equation

2’ (t) =x(t) fort >0, (15.15)

corresponding to choosing f(x(t),t) = z(t). In this case (15.13) takes the
form

x(ty) = x(tn_1) + (tn-1){tn —tn-1) = (L + (tn — tn_1))x(tn—1).
With (¢, — th—1) = % constant for n =1, ..., N, we get the formula

x(ty) = (1+ %)x(tn,l) forn=1,...,N.
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Repeating this formula, we get z(t,) ~ (14 % )(1 4+ % )2(tn—2), and so on,
which gives
1

z(1) ~ (1+ N)NI(O). (15.16)
In fact, there is an exact solution of the equation x’(t) = z(¢) for t > 0
satisfying 2(0) = 1, denoted by z(t) = exp(t), which is the exponential
function. The formula (15.16) gives the following approximate formula for
exp(1), where exp(1) = e is commonly referred to as the base of the natural
logarithm:

1 N
em (1+3)" (15.17)

We give below values of (1+ +)" for different N:

N [ (1+3)Y
1 2
2 2.25
3 2.37
4 2.4414
5 2.4883
6 2.5216
7 2.5465
10 2.5937
20 2.6533
100 2.7048
1000 | 2.7169
10000 | 2.7181

The differential equation z/(t) = z(t) for ¢ > 0, models the evolution of
for example a population of bacteria which grows at a rate z’(t) equal to
the given amount of bacteria x(t) at each time instant t. After each one
time unit such a population has multiplied with the factor e ~ 2.72.

15.5 Leibniz’ Teen-Age Dream

A form of Calculus was envisioned by Leibniz already as a teen-ager. Young
Leibniz used to amuse himself with tables of the following form

4 | 516 |7
16 | 25 | 36 | 49
7019|1113
21222

n

n2

— = | =
DN W =[N
N Ot O W

or
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exp(t)

FIGURE 15.4. Graph of exp(t): Exponential growth.

n|1|2| 3|4 )

nd[1]8]27]64]125
117]119 37 61
116]12 |18 | 24
1156 |6 6

The pattern is that below each number, one puts the difference of that
number and the number to its left. From this construction, it follows that
any number in the table is equal to the sum of all the numbers in the next
row below and to the left of the given number. For example for the squares
n? in the first table we obtain the formula

n=02n-1)+@2n-1)—1)+--+(2-2—-1)+(2-1-1), (15.18)

which can also be written as

n+n=2n+n-1)+--+2+1)=2> k. (15.19)
k=1
This corresponds to the area of the “triangular” domain in Fig. 15.5, where
each term in the sum (the factor 2 included) corresponds to the area of one
of the colons of squares.
The formula (15.19) is an analog of the formula

xr
x2:2/ ydy
0



84 15. A Very Short Calculus Course

FIGURE 15.5.

with z corresponding to n, y to k, dy to 1, and Y ;_, to fon. Note that
for n large the n-term in (15.19) is vanishing in comparison with n? in the
sum n? + n.

By dividing by n?, we can also write (15.18) as

k11
1:225— - (15.20)

1
1:2/ ydy
0

with dy corresponding to L, y to £ and }°;_, to fol. Note that the term
—% in (15.20) acts as a small error term that gets smaller with increasing
n.

From the second table with n® we may similarly see that

which is an analog of

n® = "(3k* =3k + 1), (15.21)
k=1

which is an analog of the formula

:ES:/ 3y° dy
0

with z corresponding to n, y to k and dy = 1.
By dividing by n?, we can also write (15.21) as

n

—
|
=
o~
N~—
(V]
S|~
|
S|~
3
| =
| —
+
—_

k=0 k=0
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which is an analog of

1
1:/ 3y° dy
0

with dy corresponding to %, y to £, and >} to fol. Again, the error
terms that appear get smaller with increasing n.

Notice that repeated use of summation allows e.g. n? to be computed
starting with the constant differences 6 and building the table from below.

15.6 Summary

We may think of Calculus as the science of solving differential equations.
With a similar sweeping statement, we may view Linear Algebra as the
science of solving systems of algebraic equations. We may thus present the
basic subjects of our study of Linear Algebra and Calculus in the form of
the following two problems:

Find z such that f(z) =0 (algebraic equation) (15.22)

where f(z) is a given function of z, and

Find z(t) such that 2’(t) = f(x(t),t)
for t € (0,1], (0) =0, (differential equation) (15.23)

where f(z,t) is a given function of = and ¢. Keeping this crude descrip-
tion in mind when following this book may help to organize the jungle
of mathematical notation and techniques inherent to Linear Algebra and
Calculus.

We take a constructive approach to the problem of solving equations,
where we seek algorithms through which solutions may be determined or
computed with more or less work. Algorithms are like recipes for finding
solutions in a step by step manner. In the process of constructively solving
equations one needs numbers of different kinds, such as natural numbers,
integers, rational numbers. One also needs the concept of real numbers, real
variable, real-valued function, sequence of numbers, convergence, Cauchy
sequence and Lipschitz continuous function.

These concepts are supposed to be our humble servants and not terror-
izing masters, as is often the case in mathematics education. To reach this
position we will seek to de-mystify the concepts by using the constructive
approach as much as possible. We will thus seek to look behind the curtain
on the theater scene of mathematics, where often very impressive looking
phenomena and tricks are presented by math teachers, and we will see that
as students we can very well make these standard tricks ourselves, and in
fact come up with some new tricks of our own which may even be better
than the old ones.
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15.7 Leibniz: Inventor of Calculus and Universal
Genius

Gottfried Wilhelm von Leibniz (1646-1716) is maybe the most versatile
scientist, mathematician and philosopher all times. Newton and Leibniz
independently developed different formulations of Calculus; Leibniz nota-
tion and formalism quickly became popular and is the one used still today
and which we will meet below.

FIGURE 15.6. Leibniz, Inventor of Calculus: “Theoria cum praxis”. “When I set
myself to reflect on the Union of Soul with the Body, I seemed to be cast back
again into the open sea. For I could find no way of explaining how the Body causes
something to happen in the Soul, or vice versa.....Thus there remains only my
hypothesis, that is to say the way of the pre-established harmony—pre-established,
that is by a Divine anticipatory artifice, which is so formed each of theses sub-
stances from the beginning, that in merely following its own laws, which it re-
ceived with its being, it is yet in accord with the other, just as if they mutually
influenced one another, or as if, over and above his general concourse , God were
for ever putting in his hands to set them right.”
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Leibniz boldly tackled the basic problem in Physics/Philosophy/Psychology
of Body and Soul in his treatise A New System of Nature and the Com-
munication of Substances as well as the Union Existing between the Soul
and the Body from 1695. In this work Leibniz presented his theory of Pre-
established Harmony of Soul and Body; In the related Monadology he de-
scribes the World as consisting of some kind of elementary particles in the
form of monads, each of which with a blurred incomplete perception of
the rest of the World and thus in possession of some kind of primitive soul.
The modern variant of Monadology is Quantum Mechanics, one of the most
spectacular scientific achievements of the 20th century.

Here is a description of Leibniz from Encyclopedia Britannica: “Leibniz
was a man of medium height with a stoop, broad-shouldered but bandy-
legged, as capable of thinking for several days sitting in the same chair as of
travelling the roads of Europe summer and winter. He was an indefatigable
worker, a universal letter writer (he had more than 600 correspondents), a
patriot and cosmopolitan, a great scientist, and one of the most powerful
spirits of Western civilization”.






16
The Solar System

There is talk of a new astrologer who wants to prove that the earth
moves and goes around instead of the sky, the sun, the moon, just
as if somebody were moving in a carriage or ship might hold that he
was sitting still and at rest while the earth and the trees walked and
moved. But that is how things are nowadays: when a man wishes to
be clever he must needs invent something special, and the way he
does it must needs be the best! The fool wants to turn the whole art
of astronomy upside-down. However, as Holy Scripture tells us, so
did Joshua bid the sun to stand still and not the earth.

(Sixteenth century reformist M. Luther in his table book Tischreden,
in response to Copernicus’ pamphlet Commentariolus, 1514.)

16.1 Introduction

The problem of mathematical modeling of our solar system including the
Sun, the nine planets Venus, Mercury, Tellus (the Earth), Mars, Jupiter,
Saturn, Uranus, Neptune and Pluto together with a large number of moons
and asteroids and occasional comets, has been of prime concern for human-
ity since the dawn of culture. The ultimate challenge concerns mathemat-
ical modeling of the Universe consisting of billions of galaxies each one
consisting of billions of stars, one of them being our own Sun situated in
the outskirts of the Milky Way galaxy.

According to the geocentric view presented by Aristotle (384-322 BC) in
The Heavens and further developed by Ptolemy (87-150 AD) in The Great
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System dominating the scene over 1800 years, the Earth is the center of the
Universe with the Sun, the Moon, the other planets and the stars moving
around the Earth in a complex pattern of circles upon circles (so-called
epicycles). Copernicus (1473-1543) changed the view in De Revolutionibus
and placed the Sun in the center in a new heliocentric theory, but kept the
complex system of epicycles (now enlarged to a very complex system of
80 circles upon circles). Johannes Kepler (1572-1630) discovered, based on
the extensive accurate observations made by the Swedish/Danish scientist
Tycho Brahe (1546-1601), that the planets move in elliptic orbits with
the Sun in one of the foci following Kepler’s laws, which represented an
enormous simplification and scientific rationalization as compared to the
system of epicycles.

In fact, already Aristarchus (310-230 BC) of Samos understood that the
Earth rotates around its axis and thus could explain the (apparent) motion
of the stars, but these views were rejected by Aristotle arguing as follows:
if the Earth is rotating, how is it that an object thrown upwards falls on
the same place? How come this rotation does not generate a very strong
wind? No one until Copernicus could question these arguments. Can you?

Newton (1642-1727) then cleaned up the theory by showing that the
motion of the planets could be explained from one single hypothesis: the
inverse square law of gravitation. In particular, Newton derived Kepler’s
laws for the two-body problem with one (small) planet in an elliptic orbit
around a (large) sun. Leibniz criticized Newton for not giving any expla-
nation of the inverse square law, which Leibniz believed could be derived
from some basic fact, beyond one of “mutual love” which was quite popular.
A sort of explanation was given by Einstein (1879-1955) in his theory of
General Relativity with gravitation arising as a consequence of space-time
being “curved” by the presence of mass. Einstein revolutionized cosmology,
the theory of the Universe, but relativistic effects only add small corrections
to Newton’s model for our solar system based on the inverse square law.
Einstein gave no explanation why space-time gets curved by mass, and still
today there is no convincing theory of gravitation with its mystical feature
of “action at a distance” through some mechanism yet to be discovered.

Despite the lack of a physical explanation of the inverse square law,
Newton’s theory gave an enormous boost to mathematical sciences and a
corresponding kick to the egos of scientists: if the human mind was capable
of (so easily and definitely) understanding the secrets of the solar system,
then there could be no limits to the possibilities of scientific progress...

16.2 Newton’s Equation

The basis of celestial mechanics is Newton’s second law,

F=m-a, (16.1)
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FIGURE 16.1. Tycho Brahe: “I believe that the Sun and the Moon orbit around
the Earth but that the other planets orbit around the Sun.”
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FIGURE 16.2. Johannes Kepler: “I believe that the planets are separated by invis-
ible regular polyhedra: tetrahedron, cube, octahedron, dodekahedron and ikosa-
hedron, and further that the planets including the Earth move in elliptical orbits
around the Sun.”
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expressing that a force F results in an acceleration of size a for a body of
mass m, together with the expression for the gravitational force given by

the inverse square law:
mmg
r2 ’

F=G

(16.2)

where G &~ 6.67 - 107'"'Nm? /kg” is the gravitational constant, mg is the
mass of the attracting body and r is the distance to the attracting body.

Together (16.1) and (16.2) give a system of Ordinary Differential Equa-
tions (ODEs) for the evolution of the solar system, which take the form
@ = f(u), where the dot indicates differentiation with respect to time, u(t)
is a vector containing all the positions and velocities of the bodies and f(u)
is a given vector function of u. If we know the initial positions and velocities
for all bodies in the solar system, we can find their positions and velocities
at a later time by solving the system of differential equations & = f(u) by
time-stepping. We discuss this in more detail below in Section 16.4. As a
preparation, we rewrite (16.1) and (16.2) in dimensionless form, which will
be convenient. The three fundamental units appearing in the equations are
those of space, time and mass, which are represented by the variables = (or
r), t and m. We now introduce new dimensionless variables, ' = z/AU,
t' = t/year and m’ = m/M, where 1 AU is the mean distance from the Sun
to Earth and M is the mass of the Sun. We can use the chain rule to obtain
the dimensionless acceleration, ' = & Lo/ = dL.d db.d,/JAT] — Y g
Combining (16.1) and (16.2) using our new dimensionless variables, we then
obtain

A "M -m! M
M2y = g™ ey (16.3)
year? r"2AU
or ,
!/ /m(l
where the new gravitational constant G’ is given by
G- M
o= (16.5)
AU

We leave it as an exercise to show that with suitable definitions of the units
year and AU, the new dimensionless gravitational constant G’ is given by

G’ = 4r?. (16.6)

16.3 Einstein’s Equation

In general relativity the basic concept is not force, as in Newtonian theory,
but instead the curvature of space-time. Einstein explains the motion of
the planets in our solar system in the following way: the planets move
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through space-time along straight lines, geodesics, which appear as circular
(or elliptical) orbits only because space-time is curved by the large mass of
the Sun. We shall now try to give an idea of how this works.

The curvature of space-time is given by its metric. A metric defines the
distance between two nearby points in space-time. In Euclidean geometry
that we have studied extensively in this book, the distance between two
points * = (z1,22,23) and y = (y1,¥2,ys3) is given by the square root of
the scalar product dz - dz, where dx is the difference de = © — y. With the
notation ds = |z — y| we thus have

3 1/2
ds = Vdz - dx = <Z dm?) , (16.7)
i=1
or
3
ds* = " da}. (16.8)
i=1

In the notation of general relativity, the Euclidean metric is then given by
the matrix (tensor)

0 0
10|, (16.9)
0 1

s
|
oo

as
ds* = daT g du. (16.10)

In space-time we include time ¢ as a fourth coordinate and every event in
space-time is given by a vector (t,x1,z2,23). In flat or Minkowski space-
time in the absence of masses, the curvature is zero and the metric is given
by

-1 0 0 0
0 1 0 0
9= 0 o1 0l (16.11)
0 0 0 1
which gives
ds* = —dt* + da? + dx3 + drl. (16.12)

In the presence of masses, we obtain a different metric which does not even
have to be diagonal.

From the metric g one can find the straight lines of space-time, which give
the orbits of the planets. The metric itself is determined by the distribution
of mass in space-time, and is given by the solution of Einstein’s equation,

1
Rij — 5Rgij = 8nTy, (16.13)

where (R;;) is the so-called Ricci-tensor, R is the so-called scalar curvature
and (Tj;) is the so-called stress-energy tensor. Now (R;;) and R depend
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on derivatives of the metric g = (gi;;) so (16.13) is a partial differential
equation for the metric g.

The solution for the orbits of the planets obtained from Einstein’s equa-
tion are a little different than the solution obtained from (16.4) given by
Newton. Although the difference is small, it has been verified in obser-
vations of the orbit of the planet Mercury which is the planet closest to
the Sun. We will not include these “relativistic effects” in the next section
where we move on to the computation of the evolution of the solar system.

16.4 The Solar System as a System of ODEs

We now rewrite the second-order system of ODEs given by (16.4) as a first
order system of the form @ = f(u). We start by introducing coordinates
zi(t) = (2} (t), z5(t), 2%4(¢)) for all bodies in the solar system, including the
nine planets, then Sun and the Moon. This gives a total of n =9+ 2 =11
bodies and a total of 3n = 33 coordinates. To rewrite the equations as the
first-order system @ = f we need to include also the velocities of all bodies,
@ (t) = (2% (¢), 25(t), #5(¢)), giving a total of N = 6n = 66 coordinates. We
collect all these coordinates in the vector u(t) of length N in the following
order:

(16.14)

so that the first half of the vector u(t) contains the positions of all bodies
and the second half contains the corresponding velocities.

To obtain the differential equation for u(t), we take the time-derivative
and notice that the derivative of the first half of u(t) is equal to the second
half of w(t):

di(t) = U3n+i(t), 1= 1, ey 377,, (16.15)

i.e. for n = 11 we have 11 (t) = #1(t) = u34(t) and so on.

The derivative of the second half of w(t) will contain the second deriva-
tives of the positions, i.e. the accelerations, and these are given by (16.4).
Now (16.4) is written as a scalar equation and we have to rewrite it in
vector form. For every body in the solar system, we need to compute the
contribution to the total force on the body by summing the contributions
from all other bodies. Assuming that we work in dimensionless variables
(but writing z instead of x’, m; instead of m} and so on for convenience)
we then need to compute the sum:

. G'm; a7 -2
Ei(t) =) =z J _ (16.16)
i

i — 22 |wd — 2
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O

FIGURE 16.3. The total force on body i is the sum of the contributions from all
other bodies.

R

where the unit vector
16.3.

Our final differential equation for the evolution of the solar system in the
form @ = f is then given by

gives the direction of the force, see Figure

U3 11(1)

uon(t)
at) = flu(®) = | - Gmy aizel |, (16.17)

J#L |29 —21]? |zi —zt

’ . j_..n
Z ij T3 — T3

j#n o —on? o —an] |

where we have kept the notation z' = (2}, z1, 1) rather than (u1,us,us)

and so on in the right-hand side for simplicity. The evolution of our solar
system can now be computed using the techniques of time-stepping pre-
sented in e.g. Body&Soul. We may use the initial data supplied in Table
16.1.

16.5 Predictability and Computability

Two important questions that arise naturally when we study numerical
solutions of the evolution of our solar system, such as the one in Figure
16.4, are the questions of predictability and computability.
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Position Velocity Mass
—0.147853935 7.733816715
¢ 2'(0) = —0.400627944 #1(0) = —2.014137426 1.0/6023600
2 —0.198916163 —1.877564183
. —0.725771746 0.189682646
E| 2%(0) = —0.039677000 #2(0) = —6.762413869 1.0/408523.5
g 0.027897127 —3.054194695
j —0.175679599 —6.292645274
| 2%0)= 0.886201933 #3(0) = —1.010423954 1.0/328900.5
) 0.384435698 —0.438086386
1.383219717 0.275092348
E z*(0) = —0.008134314 #*(0) = 5.042903370 1.0/3098710
—0.041033184 2.305658434
. 3.996313003 —1.664796930
; 25(0) = 2.731004338 #5(0) =  2.146870503 1.0/1047.355
- 1.073280866 0.960782651
] 6.401404019 —1.565320566
£ 2%0) = 6.170259699 #%(0) =  1.286649577 1.0/3498.5
@ 2.273032684 0.598747577
14.423408013 0.980209400
| 27(0) = —12.510136707 #7(0) = 0.896663122 1.0/22869
> —5.683124574 0.378850106
16.803677095 0.944045755
2| 2®(0) = —22.983473914 #(0) = 0.606863295 1.0/19314
2 —9.825609566 0.224889959
2 —9.884656563 1.108139341
2| 2°(0) = —27.981265594 | i°(0) = —0.414389073 | 1.0/150000000
—5.753969974 —0.463196118
—0.007141917 0.001962209
g | 2'°00) = —0.002638933 | '°(0) = —0.002469700 1
’ —0.000919462 —0.001108260
j —0.177802714 —6.164023246
E z'(0) = 0.884620944 #1(0) = —1.164502534 | 1.0/2.674 - 107
0.384016593 —0.506131880

TABLE 16.1. Initial data for the solar system at 00.00 Universal Time (UT1,
approximately GMT) January 1 2000 for dimensionless positions and veloci-
ties scaled with units 1 AU = 1.49597870 - 10'' m (one astronomical unit),
1 year = 365.24 days and M = 1.989 - 103 kg (one solar mass).
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FIGURE 16.4. A numerical computation of the evolution of the solar system,
including Earth, the Sun and the Moon.

The predictability of the solar system is the question of the accuracy of
a computation given the accuracy in initial data. If initial data is known
with an accuracy of say five digits, and the numerical computation is exact,
how long does it take until the solution is no longer accurate even to one
digit?

The computability of the solar system is the question of the accuracy in a
numerical solution given exact initial data, i.e. how far we can compute an
accurate solution with available resources such as method, computational
power and time.

Both the predictability and the computability are determined by the rate
errors grow. Luckily, errors do not grow exponentially in the case of the solar
system. If we imagine that we displace Earth slightly from its orbit and start
a computation, the orbit and velocity of Earth will be slightly different,
resulting in an error that grows linearly with time. This means that the
predictability of the solar system is quite good, since every extra digit of
accuracy in initial data means that the limit of predictability is increased
by a factor ten. If now the solution is computed using a computational
time-stepping method, this will result in additional errors. We can think of
the error from computation as a small perturbation introduced with every
new time step. Adding the contributions from all time steps we may expect
that the computational error typically grows quadratically in time.

As it turns out however, for some computational methods the error grows
only linearly: This is the case for the so called continuous Galerkin method
with degree 1 piecewise polynomial approximation ¢G(1), as shown in Fig-
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FIGURE 16.5. The growth of the numerical error in simulations of the solar
system using different numerical methods. The two methods on the left conserve
energy, which results in linear rather than quadratic error growth.

ure 16.5. This pleasant surprise is the result of an important property of
the ¢G(1) method: it conserves energy. As a result, the ¢cG(1) method per-
forms better on a long time interval than the higher-order (more accurate)
discontinuous Galerkin method dG(2) method.

16.6 Adaptive Time-Stepping

If we compute the evolution of the solar system using the adaptive c¢G(1)
method, we find that the time steps need to be small enough to follow the
orbit of the Moon (or Mercury if we do not include the Moon). This is
inefficient since the time scales for the other bodies are much larger: the
period of the Moon is one month and the period of Pluto is 250 years, and so
the time steps for Pluto should be roughly a factor 3,000 larger that the time
steps for the Moon. It has been shown recently that the standard methods
c¢G(q), including c¢G(1), and dG(q) can be extended to individual, multi-
adaptive, time-stepping for different components. In Figure 16.6 we show
a computation made with individual time steps for the different planets.
Notice how the error grows quadratically, indicating that the method does
not conserve energy. (It is possible to construct also multi-adaptive methods
which conserve energy.)
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FIGURE 16.6. A computation of the evolution of the Solar System with individ-
ual, multi-adaptive, time steps for the different planets.

16.7 Limits of Computability and Predictability

Using the multi-adaptive ¢G(2) method, it appears that the limit of com-
putability of the solar system (with the Moon and the nine planets) using
double precision, is of the order 10% years. Concerning the predictability
of the same system it appears that for every digit beyond 5 in the preci-
sion of data we gain a factor of ten in time, so that for example predicting
the position of the Moon 1000 years ahead would require about 8 correct
digits in e.g. the initial positions and velocities, masses and gravitational
constant. We conclude that it appears that normally the precision in data
would set the limit for accurate simulations of the evolution of the solar
system, if we use a high order multi-adaptive solver.






17
Turbulence and the Clay Prize

I still remember his lectures. He was a mild-mannered, dapper man
with a grey moustache, who squinted at his audience and lost it
rather quickly. (Ivar Ekeland on Jean Leray 1906-1998)

Is it by accident that the deepest insight into turbulence came from
Andrei Kolmogorov, a mathematician with a keen interest in the real
world? (Uriel Frisch 1940-)

Since we don’t even know whether these solutions exist, our under-
standing is at a very primitive level. Standard methods from PDE
appear inadequate to settle the problem. Instead, we probably need
some deep, new ideas. (offical Clay prize problem formulation)

A child, however, who had no important job and could only see
things as his eyes showed them to him, went up to the carriage.
”?The Emperor is naked,” he said. ”Fool!” his father reprimanded,
running after him. "Don’t talk nonsense!” He grabbed his child and
took him away. (HC Andersen 1805-1875)

17.1 The Clay Institute $1 Million Prize

We now return to the discussion of turbulence and the Navier—Stokes equa-
tions from the chapter On the Reasonable Effectiveness of Computational
Mathematics. This connects to the seven Clay Mathematics Institute $1
million prize problems, one of which concerns the existence, uniqueness
and regularity of solutions to the Navier—Stokes equations for incompress-
ible fluid flow.
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The Clay Institute prize problems were presented at the 2000 Millennium
shift, as a reflection of the 23 problems formulated by the famous mathe-
matician Hilbert at the second International Congress of Mathematicians
in 1900 in Paris.

The prize problems are formulated to represent open problems of math-
ematics today of fundamental importance. By studying the formulations of
these problems we may learn something about the dominating view within
mathematics today.

We now focus on the formulation of the Navier—Stokes problem, which
asks for a mathematical analytical proof of (i) existence and (ii) regularity
or smoothness, as given by the famous mathematician Charles Fefferman
(1949-), the winner of the Fields Medal 1978 (the Nobel Prize of mathe-
matics). In this formulation of the problem, the uniqueness would follow
from the regularity, and thus we may say that the uniqueness is also con-
tained in the formulation of the problem. Regularity would mean that the
solution could be differentiated many times, even if the derivatives become
very large.

As a starting point one may take the only result available in this di-
rection, which is a proof by the mathematician Jean Leray from 1934 of
existence of so-called weak solutions, or turbulent solutions in the termi-
nology used by Leray, where a weak solution satisfies the Navier—Stokes
equations in an average sense. Thus, proving that weak solutions are unique
and smooth, would give the $1 million prize. But nobody has been able to
come up with such a proof, and the progress since Leray seems to be very
small.

FIGURE 17.1. Claude Louis Marie Henri Navier (1785-1836), George Gabriel
Stokes (1819-1903), Siméon Denis Poisson (1781-1840), and Adhémar Jean
Claude Barré de Saint-Venant (1797-1886), who discovered the Navier—Stokes
equations 1821-45.

What is now very intriguing is that the prize problem formulation seems
to be based on a confusion. At least this is the impression one may get
after a study of the problem using computational mathematics, or maybe
it is our own view which is confused? To try to come to a conclusion, let’s
take a closer look at the formulation of the Clay prize problem.
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17.2  Are Turbulent Solutions Unique and Smooth?

We know that Leray in 1934 proved the existence of what he called a
weak solution or a turbulent solution. Of course, Leray was well aware of
observations of turbulent flow in nature, with a turbulent flow being quickly
fluctuating in space and time in a seemingly chaotic way. Leray knew from
the experiments of the famous scientist Osborne Reynolds from the 1880s
that turbulent flow occurs if the so called Reynolds number Re of the flow
is large enough, where Re = % with U a characteristic flow velocity, L
a characteristic length scale, and v > 0 the wiscosity of the fluid. If Re
is relatively small (Re < 10 — 100), then the flow is viscous and the flow
field is ordered and smooth or laminar, while for larger Re, the flow will
at least partly be turbulent with time-dependent non-ordered features on
a range of length scales down to a smallest scale (which may be estimated
to be of size Re=3/4, assuming L = 1). If Re = 10%, which is common
in industrial applications, then the smallest vortex of the flow could be of
size 10™% — 10~° if the length scale L = 1, thus of the size of a fraction
of a millimeter if the overall diameter of the fluid volume is one meter. A
turbulent flow thus could show a very complex interaction of vortices on a
large range of different scales.

The Reynolds number of the flow of air around our car travelling at 90
km/h (=~ 60 mph) is about 10°, and the flow of air is partly turbulent, in
particular in the large wake attaching to the rear of the car, where the air
is rapidly fluctuating and is seemingly chaotic. We can easily observe this
wake on the highway in the case of light rain or mist when the flow pattern
becomes visible.

We can also observe turbulent flow, for example, in a river in the wake
behind a stone, which was systematically studied already by Leonardo da
Vinci (1452-1519). Although Leonardo did not have access to calculus, he
skillfully captured many essential features of turbulent flow in his sketches.

We may expect a laminar flow to be determined pointwise in space-time,
while in a turbulent flow, because of its rapid fluctuations, we can only ex-
pect various mean values to be uniquely determined. In many applications
of scientific and industrial importance Re is very large, of the order 10% or
larger, and the flow shows a combination of laminar and turbulent features.

Now, believing that the Navier—Stokes equations describes nature, Leray
of course expected the Navier—Stokes equations to have turbulent solutions
in the case of large Reynolds numbers, and with this perspective it was
natural for him to call his weak solutions also turbulent solutions. But Leray
did not prove uniqueness, and presumably he did not even try, because of
the seemingly chaotic nature of a turbulent flow, uniqueness would seem to
be out of the question. At least if we talk about uniqueness in the pointwise
sense in space and time: since the turbulent solution is rapidly fluctuating
in a seemingly chaotic fashion, it would be impossible to speak about (or
measure) the exact value of the velocity of fluid particles at a specific point
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in space and time. But of course Leray may have expected that certain
mean values in space and time could be more well determined (or uniquely
determined), but he could not prove any such result.

FIGURE 17.2. Left: Jean Leray (1906-98) proved existence of weak solutions,
Jacques Salomon Hadamard (1865-1963) first studied well-posedness of differen-
tial equations. Right: Leonardo da Vinci (1452-1519) sketch of turbulent wakes.

17.3 Well-Posedness According to Hadamard

The general question of uniqueness directly couples to a question about
well-posedness of a set of differential equations, as first studied by the
French mathematician Jacques Salomon Hadamard (1865-1963). A set of
partial differential equations (like the Navier-Stokes equations) would be
well-posed if small variations in data (like initial data) would result in
small variations of the solution (at a later time). Hadamard stated that
only well-posed mathematical models could be meaningful: if very small
changes in data could cause large changes in the solution, it would clearly
be impossible to reach the basic requirement in science of reproducible
results.

The question of well-posedness may alternatively be viewed as a question
of sensitivity to perturbations. A problem with very strong sensitivity to per-
turbations would not be well-posed in the Hadamard sense. Now Hadamard
proved the well-posedness of some basic partial differential equations like
the Poisson equation, but he did not state any result for the Navier—Stokes
equations.

Of course, believing that solutions to the Navier—Stokes equations may
be turbulent, and observing the seemingly chaotic nature of turbulence,
we could not expect the Navier—Stokes equations to be well-posed in a
pointwise sense: we would expect to see a very strong pointwise sensitivity
to small perturbations. But, of course it would be natural to ask if certain
mean values may be less sensitive, so that the Navier—Stokes equations
would be well-posed in the sense of such mean values.
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17.4 Is Mathematics a Science?

We now return to the formulation of the Clay prize problem. Since the for-
mulation asks for uniqueness and smoothness, it would seem that possible
turbulent solutions are not considered, because turbulent solutions cannot
be expected to be neither pointwise unique in space-time, nor smooth since
they are so rapidly fluctuating. It would rather seem as if only laminar so-
lutions are considered. Thus, this formulation would make sense in the case
of relatively small Reynolds numbers, but not in the case of large Reynolds
numbers.

Now, how could it be possible to make such an elementary mistake?
Or is not a mistake? Is it so that one may insist that also a turbulent
solution, in principle, would be pointwise uniquely determined and also in
principle smooth, if yet with very large derivatives? Yes, it appears that this
could be the view underlying the formulation of the Clay prize problem. In
particular, it appears that insisting on the uniqueness in principle, could
allow a very strong sensitivity to perturbations.

In fact, it is easy to come to this conclusion by the fact that the unique-
ness is not explicitly included in the formulation of the problem. This is
presumably due to the fact that it is very easy to formally obtain unique-
ness if it is known that the first derivatives of the velocity are bounded: if
the bound is K one obtains, using a simple so-called Gronwall estimate,
that the effect of an initial perturbation of size § after a time 7" could be
eXT§. If Re = 10, then we expect that K = 102, and thus with 7' = 10 the
amplification of the initial perturbation would be a factor e'%%%° which is
much larger than 10'%°, which is an incredibly large number, also referred
to as a googol. But with such a strong sensitivity, anything could result
from virtually nothing, and the scientific meaning would seem to be lost.

So, we come to the conclusion that the formulation of the Clay prize
problem would insist that also a turbulent solution could be viewed as a
unique and smooth solution, more precisely, as a solution with very large
derivatives and an incredibly strong pointwise sensitivity to perturbations.
But such a view on uniqueness would seem to be against the idea of well-
posedness by Hadamard as a requirement of science. When we discuss this
point with a leading mathematical expert on the Navier—Stokes equations,
supporting the view of the Clay problem formulation, we get the message
that science is one thing, and mathematics something different: in science
an amplification factor of a googol would be way too large for any kind of
uniqueness. But it appears that in mathematics it would be acceptable in a
proof of uniqueness. But is this point of view reasonable and constructive,
or the opposite?

We now address the question of uniqueness using computational math-
ematics. It is then natural to formulate the basic question in quantitative
terms as follows for a given flow situation: What quantity of interest or
output can be computed to what tolerance to what cost?
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We consider the problem of computing the drag of a bluff body, which
could be the force our car meets from the surrounding air at a speed of 90
km/h (= 60 mph), which directly would couple to the fuel consumption.
We could then seek to compute the drag D(t) at a specific time ¢, or the
mean value of D(t) over some time interval. The c¢p-coefficient of our car
is such a mean value over very long time. So our quantities of interest or
outputs may be the momentary value of the drag D(t) at a given specific
time ¢ and the mean value of D(t) over different time intervals.

We show that we may reliably compute the long-time mean value cp on
a PC within hours up to a tolerance of a few percent. We also demonstrate
an increasing difficulty of computing D(t) over shorter time intervals, and
in particular that the momentary value at a given time instant appears to
be uncomputable, because D(t) is rapidly fluctuating in time with a total
variation of about 30%. Moreover, each record of the variation in time of
D(t) seems different, and it thus appears impossible to assign a specific
value of D(t) to a particular time instant ¢. Just as it appears impossible
to assign a specific weather and temperature to London at July 1st each
year. While to speak of a typical mean value temperature over the month of
July, would seem perfectly possible. In fact, guide books often supply such
data, while they (wisely) avoid to give predictions of specific temperatures
on e.g. July 1st.

We could then phrase these results in terms of output uniqueness/non-
uniqueness of weak solutions. Of course, if we consider pointwise out-
puts also in space (the drag D(t) is a mean value in space of pointwise
forces), then the non-uniqueness may be expected to become even more
pronounced.

The reader who does not want details could stop here, with the main
conclusions from our computations being made: certain mean value outputs
are unique/computable, while pointwise values in space-time are not.

For the reader who wants more substance, we now present some more
detailed information on the computations.

17.5 A Computational Approach to the Problem

Let us now follow a line of thought that Leray may have taken today, with
computational methods for solving the Navier—Stokes equations available.
The weak solution of Leray would then be a computed solution obtained
by using a computational method such as the finite element method. In
fact, using the finite element method we seek a kind of approximate weak
solution in the form of a piecewise polynomial (e.g. piecewise linear func-
tion) on a subdivision (mesh) of space-time. Since we can compute finite
element solutions, we are not surprised to see the existence of approximate
solutions, and the pertinent question then becomes uniqueness. Since the
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computed solution is (partly) turbulent it will look chaotic, and thus we
cannot expect to see pointwise convergence as we refine the mesh, and in
fact in computations we don’t see it. The pertinent question then is the
same: what mean values in space-time can we compute reliably?

Using a computational approach we may study the question of existence
and uniqueness for a set of specific cases with given data, which may be
representative for a wider selection of data, but we will not be able to
give one answer for all possible data, as the ideal analytical mathematical
proof would give. We are thus restricted to a case by case study, and a
reformulation of the prize problem as a set of 10® prizes each of $102,
would seem more natural.

Below we shall give also computational evidence of the existence of tur-
bulent solutions. So even if we cannot analytically construct turbulent solu-
tions to the Navier—Stokes equations, we can observe turbulent flow in real
life and we can also compute approximate solutions which are turbulent.
Of course it is natural to expect that the computed solutions approximate
the weak (turbulent) solutions proved to exist by Leray.

We now focus on flows at moderate to large Reynolds numbers, where we
thus expect to meet both laminar and turbulent flow features. Normalizing
the flow velocity U and the length scale L both to one, we thus focus on
flows with small viscosity v, say typically v < 1076,

As already indicated, in the case of turbulent flow it is natural to seek
to compute, instead of pointwise quantities some more or less local mean
values in space-time. More precisely, we choose as a quantity of interest to
compute or output, a certain mean value. In the case of the car it may be
a mean value in time of the total drag force D(t) at time ¢ acting on the
car in the direction opposite to the motion of the car. The consumption of
fuel of a car is directly related to the mean value in time of the drag force
D(t), which suitably normalized is referred to as the cp-coefficient, or drag
coefficient. Some car manufacturers like to present the cp of a certain car
as an indication of fuel economy (for example ¢p < 0.3). For a jumbo-jet a
decrease in drag with one percent could save $400 million in fuel cost over
a 25 year life span.

So we may ask, for example, if the c¢p of a car would be uniquely deter-
mined? Or in the setting of weak solutions: Will two weak solutions give
the same c¢p? The corresponding normalized mean value in time of the
total force perpendicular to the direction of motion is referred as the lift
coefficient cr,, which is crucial for flying vehicles (or sailing boats and also
very fast cars).

We will approach this type of problem by computational methods, and
it is then natural to rephrase the problem as a problem of computability.
We then specify an output, an error tolerance TOL, a certain amount
of computational work W (or computational cost), and we ask if we can
compute the output up to the tolerance TOL with the available work W.
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For example, we may ask if we can compute the cp coeflicient of a specific
car up to a tolerance of 5% on our PC within 1 hour?

More generally we propose the following formulation of the Clay prize
problem:

e (PC) For a given flow, what output can be computed to what toler-
ance to what cost?

We may view (PC) as a computational version of the question of unique-
ness of a weak solution of the form:

e (PWO) Is the output of a weak solution unique?

(PWO) can alternatively be phrased as a question of well-posedness in a
weak sense. We refer to (PWO) as a question of weak uniqueness with
respect to a given output. Below we will approach the questions of weak
uniqueness of the mean value ¢p and the momentary value D(t) of the
drag force. Of course, (PWO) couples to the concept observable quantities
of basic relevance in physic. It may seem that only uniqueness of observable
quantities could be the subject of scientific investigation. This couples to
questions of classical vs quantum mechanics, e.g. the question if an electron
can be located at a specific point in time and space.

We will now address (PC) using the technique of adaptive finite ele-
ment methods with a posteriori error estimation. The a posteriori error
estimate results from an error representation expressing the output error
as a space-time integral of the residual of a computed solution multiplied
by weights which relate to derivatives of the solution of an associated dual
problem. The weights express sensitivity of a certain output with respect
to the residual of a computed solution, and their size determine the de-
gree of computability of a certain output: The larger the weights are, the
smaller the residual has to be and the more work is required. In general
the weights increase as the size of the mean value in the output decreases,
indicating increasing computational cost for more local quantities. We give
computational evidence in a bluff body problem that a mean value in time
of the drag (the ¢p) is computable to a reasonable tolerance at a reasonable
computational cost, while the value of the drag at a specific point in time
appears to be uncomputable even at a very high computational cost.

We can rephrase this result for (PC) as the following result for (PWO):
Two weak solutions of a bluff body problem give the same cp. At least we
have then given computational evidence of a certain output uniqueness of
weak solutions.

As a general remark on approximate solutions obtained using the finite
element method, we recall that a finite element solution is set up to be an
approximate weak solution, and thus there is a strong connection between
finite element solutions and weak solutions.

Leray’s proof of existence of weak solutions is based on a basic energy
estimate for approximate solutions of the Navier—Stokes equations, which
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could be finite element solutions. Using the basic energy estimate one may
extract a weakly convergent subsequence of approximate solutions as the
mesh size tends to zero, and this way obtain a proof of existence of a
weak solution. Even if the finite element solution on each given mesh is
unique, a weak limit of a sequence of finite element solutions does not
have to be unique, and thus the Leray solution is not necessarily unique.
Of course, with this perspective the questions (PWO) and (PC) become
closely coupled: (PWO) is close to the question of output uniqueness of a
weak limit of a sequence of finite element solutions, which is close to the
output computability (PC).

17.6 The Navier—Stokes Equations

The Navier—Stokes equations for an incompressible fluid with constant kine-
matic viscosity v > 0 occupying a volume € in R? with boundary T, take
the form:

t+ (v-Vu—vAu+Vp = f in Qx1I,
Vu = 0 inQxI,
u = 0 onI'x I, (17.1)
u(-,0) = u° in Q,

where u(z,t) = (ui(z,t), us(x,t), uz(x,t)) is the velocity and p(z,t) the
pressure of the fluid at (x,t) = (21,22, 23,t), and f(z,t), u®(x), I = (0,T),
is a given driving force, initial data and time interval, respectively. For sim-
plicity and definiteness we assume homogeneous Dirichlet boundary condi-
tions for the velocity.

The first equation in (17.1) expresses conservation of momentum (New-
ton’s Second Law) and the second equation expresses conservation of mass
in the form of incompressibility.

The Navier—Stokes equations formulated in 1821-45 appear to give an
accurate description of fluid flow including both laminar and turbulent flow
features. Computational Fluid Dynamics CFD concerns the computational
simulation of fluid flow by solving the Navier—Stokes equations numerically.
To computationally resolve all the features of a flow in a Direct Numer-
ical Simulation DNS seems to require of the order Re® mesh points in
space-time, so already a flow at Re = 105 would require Re® = 10'® mesh
points in space-time, and thus would seem to be impossible to solve on any
foreseeable computer.

The computational challenge is to compute high Reynolds number flows
(e.g Re = 10°) using less computational effort than in a DNS. We shall see
that for certain mean value outputs such as the cp or ¢y, coefficients, this
indeed appears to be possible: We give evidence that the cp and ¢y, of a
surface mounted cube may be computed on a PC up to a tolerance of a
few percent (but not less).
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17.7 The Basic Energy Estimate for the
Navier—Stokes Equations

We now derive a basic stability estimate of energy type for the velocity u
of the Navier—Stokes equations (17.1), assuming for simplicity that f = 0.
This is about the only analytical a priori estimate known for the Navier—
Stokes equations.

Scalar multiplication of the momentum equation by u and integration
with respect to x gives

3
1 d/ 9 9
—— | |ul*dz+v /|Vu| dx =0,
2dt Jo ; a

because by partial integration (with boundary terms vanishing),

/Vp~udx=—/pV-uda:=O
Q Q

and

/(u-V)u-udx:—/(u~V)u-udw—/V-u\u|2dx
Q Q Q

so that

/(u-V)u~udx=O.
Q

Integrating next with respect to time, we obtain the following basic a priori
stability estimate for T" > 0:

lu(, T)I* + Dy (u, T) = [[u°]|?,

ST 17.2
D,(u,T) = VZ/ Vs ||? dt, (17.2)
i=170
where || - || denotes the Ly(€2)-norm. This estimate gives a bound on the

kinetic energy of the velocity with D, (u,T) representing the total dissipa-
tion from the viscosity of the fluid over the time interval [0, T]. We see that
the growth of this term with time corresponds to a decrease of the velocity
(momentum) of the flow (with f = 0).

The characteristic feature of a turbulent flow is that D, (u,T") is compar-
atively large, while in a laminar flow with v small, D, (u,T') is small. With
D,(u,T) ~ 1 in a turbulent flow and |Vu| uniformly distributed, we may
expect to have pointwise

V| ~ 71/, (17.3)
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17.8  Weak Solutions

From the basic energy estimate, Leray derived the existence of a weak
solution (u,p) € V x @ of the Navier-Stokes equations, defined by:

Ru(u’p§v7 q) E((“’?’U)) + ((u ’ Vu,v)) - ((v : U7p)) + ((V " U, Q)) (17 4)
+ ((vVu, Vo)) = ((f,v)) =0 V(v,q) € V x Q, '

assuming u(0) = u® € Ly(Q)3 and f € Lo(I; H~1(2)3), where

V ={v:ve Ly(I; H}(Q)?),o € Lo(I; H1(Q)?)},
Q = Lo(I; Ly(Q)),

where H{(2)? is the usual Sobolev space of vector functions being square
integrable together with their first derivatives over 2, with dual H~1(Q)3,
and ((+,-)) denoting the corresponding Lo (I; L2(£2)) inner product or pair-
ing. As usual, Lo(I; X) with X a Hilbert space denotes the set of func-
tions v : I — X which are square integrable. Below we write Lo(X) in-
stead of Lo(I; X) and Lo(H') and Lo(H ') instead of Lo(Hg(£2)3) and
Lo(I; H1(Q)3). Note that the term ((u - Vu,v)) is interpreted as

*Z((uiuj,vj,z‘)),

where v, ; = 0v;/0x;.

17.9 Computational Solution

We now consider a computational solution of the Navier—Stokes equations.
Without going into details of the construction of these methods, which we
refer to as Generalized Galerkin or G2, we can describe these methods as
producing an approximate solution (up,pp) € Vi X Qp, where V3, x Q) is
a piecewise polynomial finite element subspace of V' x @) defined on space-
time meshes with h representing the mesh size in space-time, defined by
the following discrete analog of (17.4)

Ry (up,pr;v,q) =0 for all (v,q) € Vi, X Qn, (17.5)

expressing that the discrete residual Rp(up,pn) = Rp(up,pn : -, -) is or-
thogonal to V}, x Q. Note that in the finite element method (17.5) we use
an artificial viscosity of size h instead of the physical viscosity v assuming
h > v. There are other more sophisticated ways of introducing a (neces-
sary) artificial viscosity coupled to weighted least squares stabilization in
G2, but here we consider the simplest form of stabilization.
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The finite element solution satisfies an energy estimate analogous to
(17.2) of the form

VAV || < C, (17.6)

where || - || denotes the Ly(Lg)-norm, which follows by choosing (v, q) =
(up,pp) in (17.5). Here and below, C' is a positive constant of unit size.

We will see below that to estimate an output error, we will have to
estimate R, (up, pr; ©n, 0n), where (¢op, 0p) is the solution of a certain linear
dual problem with data connected to the output. In general, (¢p,6p) will
not belong to the finite element subspace, and we will thus need to estimate
R, (up, pr; ¢n,0n). The basic estimate for this quantity takes the form

| Ry (un, pr; 90, 01)| < CVR|nll Lo a1 (17.7)

if we omit the relevant #,-term assuming exact incompressibility, and C
denotes a constant of moderate size. To motivate this estimate, we observe
that estimating separately the dissipative term in G? (with viscosity h)
using the energy estimate (17.6), we get by Cauchy’s inequality

[(hVun, Veon))| < IIVRVun VAV onl| < OVhllon | Ly (any-

One can now argue that the remaining part of the residual can be esti-
mated similarly, which leads to (17.7). We conclude that we expect the
residual of (up,pr) to be small (of size h'/?) in a weak norm. However, we
cannot expect the residual to be small in a strong sense: We would except
the residual in an Ly-sense to be of size h~/? reflecting the basic energy
estimate (17.6), which suggests that |Vuy| ~ h=1/2 paralleling (17.3).

17.10 Output Error Representation

We now proceed to estimate the error in certain mean value outputs of a
computed finite element solution (up,pp) as compared to the output of a
weak solution (u,p). We then consider an output of the form

M(u) = ((u,9))

where ¢ € Ly(Ls) is a given (smooth) function. The output M (u) then
corresponds to a mean value in space and time of the velocity u with the
function v appearing as a weight. We then establish an error representation
in terms of the residual of the computed solution and the solution (¢, 65)
of a certain linear dual problem (with coefficients depending on both v and
up,) to be specified below, of the form

M(u) = M(un) = Ry (un, phs n, 0n)- (17.8)
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We can then attempt to estimate the output error by using (17.7) to get
| M (u) = M(up)| < CVhllgnl| ), (17.9)

and the crucial question will thus concern the size of |¢pl/z,m1). More
precisely, we compute (an approximation of) the dual solution (¢, 65,) and
directly evaluate R, (un,pn; ©n,0r). We may also use (17.9) to get a rough
idea on the dependence of M (u) — M (up,) on the mesh size h, and we will
then obtain convergence in output if, roughly speaking, [|¢n||z,(m1) grows
slower than h=1/2.

We need here to make the role of A vs ¥ more precise. We assume that
v is quite small, say v < 1079, so that it is inconceivable that in a com-
putation we could reach h < v; we would rather have 1074 < h <1072
In the finite element method we use an artificial viscosity of size h instead
of the physical viscosity v and thus computing on a sequence of meshes
with decreasing h, could be seen as computing a sequence of solutions to
problems with decreasing effective viscosity of size h. We would then be
interested in the “limit” with h = v, and we would by observing the con-
vergence (or divergence) for h > v seek to draw a conclusion concerning
the case h = v. So, in the computational examples to be presented we com-
pute on a sequence of successively refined meshes with decreasing h and we
evaluate the quantity R, (un,pn;©n,0r) to seek to determine convergence
(or divergence) for a specific output.

17.11 The Dual Problem

The dual problem takes the following form, starting from a finite element
solution (up,pr) and a weak solution (u,p) with ¢ a given (smooth) func-
tion: Find (¢, 0r) with ¢ =0 on T, such that

—on — (u-V)on +Vuy - o — vApp + V0, = in QxI,
Vepr = 0 inQx1I,
on(T) = 0 in Q,
(17.10)

where (Vup-¢n); = (up),j-@r. This is a linear convection-diffusion-reaction
problem, where the time variable runs “backwards” in time with initial
value (= 0) given at final time 7. The reaction coefficient Vuy, is large and
highly fluctuating, and the convection velocity w is of unit size and is also
fluctuating. A standard Gronwall type estimate of the solution (¢p,0r)
in terms of the data v would bring in an exponential factor eX” with
K a pointwise bound of |Vup| which would be enormous, as indicated
above. When we compute the solution (¢, y), corresponding to ¢p or ¢,
we note that (¢p,0,) does not seem to explode exponentially at all, as
would be indicated by Gronwall. Intuitively, by cancellation in the reaction
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term, with roughly as much production as consumption, (¢p,0;,) grows
very slowly with deceasing h, and as we have said, the crucial question will
be the growth of the quantity |[n ||z, m1)-

To establish the error representation (17.8) we multiply (17.10) by u—up,
integrate by parts, and use the fact that

(u-V)u— (up - V)up = (u-V)e+ Vuy, - e,

where e = u — uy,.

In the computations, we have to replace the convection velocity u by the
computed velocity uy,. We don’t expect u;, to necessarily be close pointwise
to u, so we have to deal with the effect of a large perturbation in the
dual linear problem. In the computations we get evidence that the effect
on a crucial quantity like ||on||z,(m1) may be rather small, if the output
is c¢p or cr. More precisely, our computations show in these cases a quite
slow logarithmic growth of |¢4l|1,(m1) in terms of 1/h, which indicates
that the large perturbation in u indeed has little influence on the error
representation for c¢p and cr..

The net result is that we get evidence of output uniqueness of weak
solutions in the case the output is ¢p or ¢;,. We contrast this with compu-
tational evidence that an output of the momentary drag D(t) for a given
specific point in time ¢, is not uniquely determined by a weak solution.

17.12 Output Uniqueness of Weak Solutions

Suppose we have two weak solutions (u,p) and (@, p) of the Navier—Stokes
equations with the same data. Let (@p,0y) be a corresponding dual solu-
tion defined by the dual equation (17.10), with wup replaced by 4, and a
given output (given by the function ). Output uniqueness will then hold
if [[onll L,y < oo

In practice, we will seek to compute ||on ||z, 1) approximately, replacing
both u and 4 as coefficients in the dual problem by a computed solution wup,
thus obtaining an approximate dual velocity ¢. We then study ||¢n ||z, a1)
as h decreases and we extrapolate to h = v. If the extrapolated value
lovllL,(rry < oo, or rather is not too large, then we have evidence of
output uniqueness. If the extrapolated value is very large, we get indication
of output non-uniqueness. As a crude test of largeness of |¢, | 1,m1), it
appears natural to use ||¢y ||,y >> v 1/2

We may further use a slow growth of ||on| 1, (1) as evidence that it is
possible to replace both u and @ by uj, in the computation of the solution
of the dual problem: a near constancy indicates a desired robustness to
(possibly large) perturbations of the coefficients u and .

We now proceed to give computational evidence.
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17.13 Computational Results

Uniqueness of cp and cy,

The computational example is a bluff body benchmark problem. We com-
pute the mean value in time of drag and lift forces on a surface mounted
cube in a rectangular channel from an incompressible fluid governed by
the Navier-Stokes equations (17.1), at Re = 40.000 based on the cube side
length and the bulk inflow velocity. We compute the mean values over a
time interval of a length corresponding to 40 cube side lengths, which we
take as approximations of c¢p and ¢y, defined as mean values over very long
time.

The incoming flow is laminar time-independent with a laminar boundary
layer on the front surface of the body, which separates and develops a
turbulent time-dependent wake attaching to the rear of the body. The flow
is thus very complex with a combination of laminar and turbulent features
including boundary layers and a large turbulent wake, see Figure 17.3.

The dual problem corresponding to ¢p has boundary data of unit size
for ¢ on the cube in the direction of the main flow, acting on the time
interval underlying the mean value, and zero boundary data elsewhere. A
snapshot of the dual solution corresponding to c¢p is shown in Figure 17.4,
and in Figure 17.5 we plot ||¢p||r, (1) as a function of A™!, with h the
smallest element diameter in the computational mesh.

We find that ||¢p|| 1, (1) shows a slow logarithmic growth, and extrapo-
lating we find that |[¢, 7,1y ~ v~1/2. We take this as evidence of com-
putability and weak uniqueness of ¢p, and we obtain similar results for the
lift coefficient cy,.

Non-Uniqueness of D(t)

We now investigate the computability and weak uniqueness of the total drag
force D(t) at a specific value time ¢. In Figure 17.6 we show the variation
in time of D(t) computed on different meshes, and we notice that D(t) for
a given t appears to converge very slowly or not at all with decreasing h.
We now choose one of the finer meshes corresponding to h~! = 500, and
we compute the dual solution corresponding to a mean value of D(t) over a
time interval [Ty, T'], where we let Ty — T. We thus seek to compute D(T).
In Figure 17.7 we find a growth of ||¢4 ||z, (g1 similar to [T — Tp|~1/2,
as we let Ty — T. The results show that for |7 — Ty| = 1/16 we have
lonllrymry =~ 10071, and extrapolation of the computational results indi-
cate further growth of |¢n|1,(m1), as To — T and h — v. We take this as
evidence of non-computability and weak non-uniqueness of D (7).
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FIGURE 17.3. Velocity |u| (upper) and pressure |p| (lower), after 13 adaptive
mesh refinements, in the xix2-plane at x3 = 3.5H and in the xjixs-plane at
zo = 0.5H, with H being the cube side length.
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FIGURE 17.4. Dual velocity || (upper) and dual pressure |0] (lower), after
14 adaptive mesh refinements with respect to mean drag, in the x;iz2-plane at
z3 = 3.5H and in the xizs-plane at xo = 0.5H, with H being the cube side
length.
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FIGURE 17.7. |lon|| 1, (a1 corresponding to computation of the mean drag force
(normalized) over a time interval [Tp,T], as a function of the interval length
|T" — To| (log,g-log,o-plot).

17.14 Conclusion

We have given computational evidence of weak uniqueness of mean values
such as ¢p and c¢p and weak non-uniqueness of a momentary value D(t)
of the total drag. In the computations we observe this phenomenon as
a continuous degradation of computability (increasing error tolerance) as
the length of the mean value decreases to zero. When the error tolerance
is larger than one, then we have effectively lost computability, since the
oscillation of D(t) is of unit size. We compute c¢p and ¢, as mean values of
finite length (of size 10), and thus we expect some variation also of these
values, but on a smaller scale than for D(t), maybe of size = 0.1 with
0.01 as a possible lower limit with present computers. Thus the distinction
between computability (or weak uniqueness) and non-computability (weak
non-uniqueness) may in practice be just one or two orders of magnitude in
output error, rather than a difference between 0 and co.

Of course, this is what you may expect in a quantified computational
world, as compared to an ideal mathematical world. In particular, we are
led to measure residuals of approximate weak solutions, rather than work-
ing with exact weak solutions with zero residuals. A such quantified math-
ematical world is in fact richer than an ideal zero residual world, and thus
possibly more accessible.
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Do Mathematicians Quarrel?

The proofs of Bolzano’s and Weierstrass theorems have a decidedly
non-constructive character. They do not provide a method for actu-
ally finding the location of a zero or the greatest or smallest value of
a function with a prescribed degree of precision in a finite number of
steps. Only the mere existence, or rather the absurdity of the non-
existence, of the desired value is proved. This is another important
instance where the ”intuitionists” have raised objections; some have
even insisted that such theorems be eliminated from mathematics.
The student of mathematics should take this no more seriously than
did most of the critics. (Courant)

I know that the great Hilbert said “We will not be driven out from
the paradise Cantor has created for us”, and I reply “I see no reason
to walking in”. (R. Hamming)

There is a concept which corrupts and upsets all others. I refer not to
the Evil, whose limited realm is that of ethics; I refer to the infinite.
(Borges).

Either mathematics is too big for the human mind or the human
mind is more than a machine. (Godel)

18.1 Introduction

Mathematics is often taught as an “absolute science” where there is a
clear distinction between true and false or right and wrong, which should
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be universally accepted by all professional mathematicians and every en-
lightened layman. This is true to a large extent, but there are important
aspects of mathematics where agreement has been lacking and still is lack-
ing. The development of mathematics in fact includes as fierce quarrels
as any other science. In the beginning of the 20th century, the very foun-
dations of mathematics were under intense discussion. In parallel, a split
between “pure” and “applied” mathematics developed, which had never
existed before. Traditionally, mathematicians were generalists combining
theoretical mathematical work with applications of mathematics and even
work in mechanics, physics and other disciplines. Leibniz, Lagrange, Gauss,
Poincaré and von Neumann all worked with concrete problems from me-
chanics, physics and a variety of applications, as well as with theoretical
mathematical questions.

In terms of the foundations of mathematics, there are different “math-
ematical schools” that view the basic concepts and axioms somewhat dif-
ferently and that use somewhat different types of arguments in their work.
The three principal schools are the formalists, the logicists and finally the
intuitionists, also known as the constructivists.

As we explain below, we group both the formalists and the logicists
together under an idealistic tradition and the the constructivists under
a realistic tradition. It is possible to associate the idealistic tradition to
an “aristocratic” standpoint and the realistic tradition to a “democratic”
one. The history of the Western World can largely be be viewed as a battle
between an idealistic/aristocratic and a realistic/democratic tradition. The
Greek philosopher Plato is the portal figure of the idealistic/aristocratic
tradition, while along with the scientific revolution initiated in the 16th
century, the realistic/democratic tradition has taken a leading role in our
society.

The debate between the formalists/logicists and the constructivists cul-
minated in the 1930s, when the program put forward by the formalists and
logicists suffered a strong blow from the logician Kurt Godel. Gédel showed,
to the surprise of world including great mathematicians like Hilbert, that
in any axiomatic mathematical theory containing the axioms for the natu-
ral numbers, there are true facts which cannot be proved from the axioms.
This is Godel’s famous incompleteness theorem.

Alan Turing (1912-54, dissertation at Kings College, Cambridge 1935)
took up a similar line of thought in the form of computability of real num-
bers in his famous 1936 article On Computable Numbers, with an appli-
cation to the Entscheidungsproblem. In this paper Turing introduced an
abstract machine, now called a Turing machine, which became the proto-
type of the modern programmable computer. Turing defined a computable
number as real number whose decimal expansion could be produced by a
Turing machine. He showed that = was computable, but claimed that most
real numbers are not computable. He gave gave examples of “undecidable
problems” formulated as the problem if the Turing machine would come to
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a halt or not, see Fig. 18.2. Turing laid out plans for an electronic computer
named Analytical Computing Engine ACE, with reference to Babbage’s’
Analytical Engine, at the same time as the ENIAC was designed in the US.

FIGURE 18.1. Kurt Godel (with Einstein 1950): “Every formal system is incom-
plete.”

Godel’s and Turing’s work signified a clear defeat for the formalists/
logicists and a corresponding victory for the constructivists. Paradoxically,
soon after the defeat the formalists/logicists gained control of the mathe-
matics departments and the constructivists left to create new departments
of computer science and numerical analysis based on constructive mathe-
matics. It appears that the trauma generated by Godel’s and Turing’s find-
ings on the incompleteness of axiomatic methods and un-computability,
was so strong that the earlier co-existence of the formalists/logicists and
constructivists was no longer possible. Even today, the world of mathemat-
ics is heavily influenced by this split.

We will come back to the dispute between the formalists/logicists and
constructivists below, and use it to illustrate fundamental aspects of math-
ematics which hopefully can help us to understand our subject better.
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FIGURE 18.2. Alan Turing: “I wonder if my machine will come to a halt.”.

18.2 The Formalists

The formalist school says that it does not matter what the basic concepts
actually mean, because in mathematics we are just concerned with relations
between the basic concepts whatever the meaning may be. Thus, we do
not have to (and cannot) explain or define the basic concepts and can view
mathematics as some kind of ”"game”. However, a formalist would be very
anxious to demonstrate that in his formal system it would not be possible
to arrive at contradictions, in which case his game would be at risk of
breaking down. A formalist would thus like to be absolutely sure about the
consistency of his formal system. Further, a formalist would like to know
that, at least in principle, he would be able to understand his own game
fully, that is that he would in principle be able to give a mathematical
explanation or proof of any true property of his game. The mathematician
Hilbert was the leader of the formalist school. Hilbert was shocked by the
results by Godel.

18.3 The Logicists and Set Theory

The logicists try to base mathematics on logic and set theory. Set theory
was developed during the second half of the 19th century and the language
of set theory has become a part of our every day language and is very
much appreciated by both the formalist and logicist schools, while the
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FIGURE 18.3. Bertrand Russell: “I am protesting.”

constructivists have a more reserved attitude. A set is a collection of items,
which are the elements of the set. An element of the set is said to belong to
the set. For example, a dinner may be viewed as a set consisting of various
dishes (entree, main course, dessert, coffee). A family (the Wilsons) may be
viewed as a set consisting of a father (Mr. Wilson), a mother (Mrs. Wilson)
and two kids (Tom and Mary). A soccer team (IFK Goteborg for example)
consists of the set of players of the team. Humanity may be said to be set
of all human beings.

Set theory makes it possible to speak about collections of objects as
if they were single objects. This is very attractive in both science and
politics, since it gives the possibility of forming new concepts and groups
in hierarchical structures. Out of old sets, one may form new sets whose
elements are the old sets. Mathematicians like to speak about the set of all
real numbers, denoted by R, the set of all positive real numbers, and the
set of all prime numbers, and a politician planning a campaign may think
of the set of democratic voters, the set of auto workers, the set of female
first time voters, or the set of all poor, jobless, male criminals. Further,
a workers union may be thought of as a set of workers in a particular
factory or field, and workers unions may come together into unions or sets
of workers unions.

A set may be described by listing all the elements of the set. This may
be very demanding if the set contains many elements (for example if the
set is humanity). An alternative is to describe the set through a property
shared by all the elements of the set, e.g. the set of all people who have the
properties of being poor, jobless, male, and criminal at the same time. To
describe humanity as the set of beings which share the property of being
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human, however seems to more of a play with words than something very
useful.

The leader of the logicist school was the philosopher and peace activist
Bertrand Russell (1872-1970). Russell discovered that building sets freely
can lead into contradictions that threaten the credibility of the whole logi-
cist system. Russell created variants of the old liar’s parador and barber’s
paradozx, which we now recall. Gédel’s theorem may be viewed to a variant
of this paradox.

The Liar’s Paradox

The liar’s paradox goes as follows: A person says "I am lying”. How should
you interpret this sentence? If you assume that what the person says is
indeed true, then it means that he is lying and then what he says is not
true. On the other hand, if you assume that what he says is not true, this
means that he is not lying and thus telling the truth, which means that
what he says is true. In either case, you seem to be led to a contradiction,
right? Compare Fig. 18.4.

FIGURE 18.4. “I am (not) lying”

The Barber’s Paradox

The barber’s paradox goes as follows: The barber in the village has decided
to cut the hair of everyone in the village who does not cut his own hair.
What shall the barber do himself? If he decides to cut his own hair, he will
belong to the group of people who cut their own hair and then according to
his decision, he should not cut his own hair, which leads to a contradiction.
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On the other hand, if he decides not to cut his own hair, then he would
belong to the group of people not cutting their own hair and then accord-
ing to his decision, he should cut his hair, which is again a contradiction.
Compare Fig. 18.5.

FIGURE 18.5. Attitudes to the “barber’s paradox”: one relaxed and one very
concerned.

18.4 The Constructivists

The intuitionist/constructivist view is to consider the basic concepts to
have a meaning which may be directly ”intuitively” understood by our
brains and bodies through experience, without any further explanation.
Furthermore, the intuitionists would like to use as concrete or “construc-
tive” arguments as possible, in order for their mathematics always to have
an intuitive “real” meaning and not just be a formality like a game.

An intuitionist may say that the natural numbers 1, 2, 3,...., are obtained
by repeatedly adding 1 starting at 1. We know that from the constructivist
point of view, the natural numbers are something in the state of being
created in a process without end. Given a natural number n, there is always
a next natural number n + 1 and the process never stops. A constructivist
would not speak of the set of all natural numbers as something having been
completed and constituting an entity in itself, like the set of all natural
numbers as a formalist or logicist would be willing to do. Gauss pointed
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out that “the set of natural numbers” rather would reflect a “mode of
speaking” than existence as a set.

FIGURE 18.6. Luitzen Egbertus Jan Brouwer 1881-1966: : “One cannot inquire
into the foundations and nature of mathematics without delving into the question
of the operations by which mathematical activity of the mind is conducted. If one
failed to take that into account, then one would be left studying only the language
in which mathematics is represented rather than the essence of mathematics”.

An intuitionist would not feel a need of “justification” or a proof of con-
sistency through some extra arguments, but would say that the justification
is built into the very process of developing mathematics using constructive
processes. A constructivist would so to speak build a machine that could
fly (an airplane) and that very constructive process would itself be a proof
of the claim that building an airplane would be possible. A constructivist is
thus in spirit close to a practicing engineer. A formalist would not actually
build an airplane, rather make some model of an airplane, and would then
need some type of argument to convince investors and passengers that his
airplane would actually be able to fly, at least in principle. The leader of the
intuitionist school was Brouwer (1881-1966), see Fig. 18.6. Hard-core con-
structivism makes life very difficult (like strong vegetarianism), and because
the Brouwer school of constructivists were rather fundamentalist in their
spirit, they were quickly marginalized and lost influence in the 1930s. The
quote by Courant given above shows the strong feelings involved related to
the fact that very fundamental dogmas were at stake, and the general lack
of rational arguments to meet the criticism from the intuitionists, which
was often replaced by ridicule and oppression.

Van der Waerden, mathematician who studied at Amsterdam from 1919
to 1923 wrote: “Brouwer came [to the university] to give his courses but
lived in Laren. He came only once a week. In general that would have
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not been permitted - he should have lived in Amsterdam - but for him an
exception was made. ... I once interrupted him during a lecture to ask a
question. Before the next week’s lesson, his assistant came to me to say
that Brouwer did not want questions put to him in class. He just did not
want them, he was always looking at the blackboard, never towards the
students. ... Even though his most important research contributions were
in topology, Brouwer never gave courses on topology, but always on - and
only on - the foundations of intuitionism . It seemed that he was no longer
convinced of his results in topology because they were not correct from
the point of view of intuitionism, and he judged everything he had done
before, his greatest output, false according to his philosophy. He was a very
strange person, crazy in love with his philosophy”.

18.5 The Peano Axiom System for Natural
Numbers

The Italian mathematician Peano (1858-1932) set up an axiom system for
the natural numbers using as undefined concepts “natural number”, “suc-
cessor”, “belong to”, “set” and “equal to”. His five axioms are

1. 1 is a natural number
2. 1 is not the successor of any other natural number
3. Each natural number n has a successor

4. If the successors of n and m are equal then so are n and m

There is a fifth axiom which is the axiom of mathematical induction stating
that if a property holds for any natural number n, whenever it holds for
the natural number preceding n and it holds for n = 1, then it holds for
all natural numbers. Starting with these five axioms, one can derive all the
basic properties of real numbers.

We see that the Peano axiom system tries to catch the essence of our
intuitive feeling of natural numbers as resulting from successively adding
1 without ever stopping. The question is if we get a more clear idea of the
natural numbers from the Peano axiom system than from our intuitive feel-
ing. Maybe the Peano axiom system helps to identify the basic properties
of natural numbers, but it is not so clear what the improved insight really
consists of.

The logicist Russell proposed in Principia Mathematica to define the
natural numbers using set theory and logic. For instance, the number 1
would be defined roughly speaking as the set of all singletons, the number
two the set of all dyads or pairs, the number three as the set of all triples, et
cet. Again the question is if this adds insight to our conception of natural
numbers?
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18.6 Real Numbers

Many textbooks in calculus start with the assumption that the reader is
already familiar with real numbers and quickly introduce the notation R to
denote the set of all real numbers. The reader is usually reminded that the
real numbers may be represented as points on the real line depicted as a
horizontal (thin straight black) line with marks indicating 1, 2, and maybe
numbers like 1.1, 1.2, v/2, and 7. This idea of basing arithmetic, that is num-
bers, on geometry goes back to FEuclid, who took this route to get around
the difficulties of irrational numbers discovered by the Pythagoreans. How-
ever, relying solely on arguments from geometry is very impractical and
Descartes turned the picture around in the 17th century by basing geome-
try on arithmetic, which opened the way to the revolution of Calculus. The
difficulties related to the evasive nature of irrational numbers encountered
by the Pythagoreans, then of course reappeared, and the related questions
concerning the very foundations of mathematics gradually developed into
a quarrel with fierce participation of many of the greatest mathematicians
which culminated in the 1930s, and which has shaped the mathematical
world of today.

We have come to the standpoint above that a real number may be de-
fined through its decimal expansion. A rational real number has a decimal
expansion that eventually becomes periodic. An irrational real number has
an expansion which is infinite and is not periodic. We have defined R as
the set of all possible infinite decimal expansions, with the agreement that
this definition is a bit vague because the meaning of “possible” is vague.
We may say that we use a constructivist/intuitionist definition of R.

The formalist /logicist would rather like to define R as the set of all infinite
decimal expansions, or set of all Cauchy sequences of rational numbers, in
what we called a universal Big Brother style above.

The set of real numbers is often referred to as the “continuum” of real
numbers. The idea of a “continuum” is basic in classical mechanics where
both space and time is supposed to be “continuous” rather than “discrete”.
On the other hand, in quantum mechanics, which is the modern version
of mechanics on the scales of atoms and molecules, matter starts to show
features of being discrete rather than continuous. This reflects the famous
particle-wave duality in quantum mechanics with the particle being dis-
crete and the wave being continuous. Depending on what glasses we use,
phenomena may appear to be more or less discrete or continuous and no
single mode of description seems to suffice. The discussions on the nature of
real numbers may be rooted in this dilemma, which may never be resolved.
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18.7 Cantor versus Kronecker

Let us give a glimpse of the discussion on the nature of real numbers
through two of the key personalities, namely Cantor (1845-1918) in the for-
malist corner and Kronecker (1823-91), in the constructivist corner. These
two mathematicians were during the late half of the 19th century involved
in a bitter academic fight through their professional lives (which eventually
led Cantor into a tragic mental disorder). Cantor created set theory and in
particular a theory about sets with infinitely many elements, such as the set
of natural numbers or the set of real numbers. Cantors theory was criticized
by Kronecker, and many others, who simply could not believe in Cantors
mental constructions or consider them to be really interesting. Kronecker
took a down-to-earth approach and said that only sets with finitely many
elements can be properly understood by human brains (“God created the
integers, all else is the work of man”). Alternatively, Kronecker said that
only mathematical objects that can be ”constructed” in a finite number of
steps actually “exist”, while Cantor allowed infinitely many steps in a “con-
struction”. Cantor would say that the set of all natural numbers that is the
set with the elements 1,2, 3,4, ..., would “exist” as an object in itself as the
set of all natural numbers which could be grasped by human brains, while
Kronecker would deny such a possibility and reserve it to a higher being. Of
course, Kronecker did not claim that there are only finitely many natural
numbers or that there is a largest natural number, but he would (following
Aristotle) say that the existence of arbitrarily large natural numbers is like
a “potential” rather than an actual reality.

FIGURE 18.7. Cantor (left): “I realize that in this undertaking I place myself in a
certain opposition to views widely held concerning the mathematical infinite and
to opinions frequently defended on the nature of numbers”. Kronecker (right):
“God created the integers, all else is the work of man”.
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In the first round, Kronecker won since Cantor’s theories about the infi-
nite was rejected by many mathematicians in the late 19th and beginning
20th century. But in the next round, the influential mathematician Hilbert,
the leader of the formalist school, joined on the side of Cantor. Bertrand
Russell and Norbert Whitehead tried to give mathematics a foundation
based on logic and set theory in their monumental Principia Mathematica
(1910-13) and may also be viewed as supporters of Cantor. Thus, despite
the strong blow from Gdédel in the 1930’s, the formalist/logicist schools took
over the scene and have been dominating mathematics education into our
time. Today, the development of the computer is again starting to shift the
weight to the side of the constructivists, simply because no computer is able
to perform infinitely many operations nor store infinitely many numbers,
and so the old battle may come alive again.

Cantor’s theories about infinite numbers have mostly been forgotten, but
there is one reminiscence in most presentations of the basics of Calculus,
namely Cantor’s argument that the degree of infinity of the real numbers is
strictly larger than that of the rational or natural numbers. Cantor argued
as follows: suppose we try to enumerate the real numbers in a list with a
first real number r1, a second real number r5 and so on. Cantor claimed
that in any such list there must be some real numbers missing, for exam-
ple any real number that differs from r; in the first decimal, from r5 in
the second decimal and so on. Right? Kronecker would argue against this
construction simply by asking full information about for example rq, that
is, full information about all the digits of 1. OK, if r; was rational then
this could be given, but if 1 was irrational, then the mere listing of all the
decimals of r; would never come to an end, and so the idea of a list of real
numbers would not be very convincing. So what do you think? Cantor or
Kronecker?

Cantor not only speculated about different degrees of infinities, but also
cleared out more concrete questions about e.g. convergence of trigonometric
series viewing real numbers as limits of of Cauchy sequences of rational
numbers in pretty much the same we have presented.

18.8 Deciding Whether a Number is Rational or
Irrational

We dwell a bit more on the nature of real numbers. Suppose x is a real
number, the decimals of which can be determined one by one by using a
certain algorithm. How can we tell if x is rational or irrational? Theoreti-
cally, if the decimal expansion is periodic then z is rational otherwise it is
irrational. There is a practical problem with this answer however because
we can only compute a finite number of digits, say never more than 101%°.
How can we be sure that the decimal expansion does not start repeating af-
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ter that? To be honest, this question seems very difficult to answer. Indeed
it appears to be impossible to tell what happens in the complete decimal
expansion by looking at a finite number of decimals. The only way to de-
cide if a number z is rational or irrational is figure out a clever argument
like the one the Pythagoreans used to show that v/2 is irrational. Figuring
out such arguments for different specific numbers like 7 and e is an activity
that has interested a lot of mathematicians over the years.

On the other hand, the computer can only compute rational numbers and
moreover only rational numbers with finite decimal expansions. If irrational
numbers do not exist in practical computations, it is reasonable to wonder if
they truly exist. Constructive mathematicians like Kronecker and Brouwer
would not claim that irrational numbers really exist.

18.9 The Set of All Possible Books

We suggest it is reasonable to define the set of all real numbers R as the
set of all possible decimal expansions or equivalently the set of all pos-
sible Cauchy sequences of rational numbers. Periodic decimal expansions
correspond to rational numbers and non-periodic expansions to irrational
numbers. The set R thus consists of the set of all rational numbers together
with the set of all irrational numbers. We know that it is common to omit
the word “possible” in the suggested definition of R and define R as “the
set of all real numbers”, or “the set of all infinite decimal expansions”.

Let’s see if this hides some tricky point by way of an analogy. Suppose
we define a “book” to be any finite sequence of letters. There are specific
books such as “The Old Man and the Sea” by Hemingway, “The Author
as a Young Dog” by Thomas, “Alice in Wonderland” by Lewis Carrol, and
“1984” by Orwell, that we could talk about. We could then introduce B as
“the set of all possible books”, which would consist of all the books that
have been and will be written purposely, together with many more “books”
that consist of random sequences of letters. These would include those fa-
mous books that are written or could be written by chimpanzees playing
with typewriters. We could probably handle this kind of terminology with-
out too much difficulty, and we would agree that 1984 is an element of B.
More generally, we would be able to say that any given book is a member
of B. Although this statement is difficult to deny, it is also hard to say that
this ability is very useful.

Suppose now we omit the word possible and start to speak of B as “the
set of all books”. This could give the impression that in some sense B is an
existing reality, rather than some kind of potential as when we speak about
“possible books”. The set B could then be viewed as a library containing
all books. This library would have to be enormously large and most of the
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“books” would be of no interest to anyone. Believing that the set of all
books “exists” as a reality would not be very natural for most people.

The set of real numbers R has the same flavor as the set of all books
B. It must be a very large set of numbers of which only a relative few,
such as the rational numbers and a few specific irrational numbers, are
ever encountered in practice. Yet, it is traditional to define R as the set
of real numbers, rather than as “set of all possible real numbers”. The
reader may choose the interpretation of R according to his own taste. A
true idealist would claim that the set of all real numbers “exists”, while
a down-to-earth person would more likely speak about the set of possible
real numbers. Eventually, this may come down a personal religious feeling;
some people appear to believe that Heaven actually exists, and while others
might view as a potential or as a poetic way of describing something which
is difficult to grasp.

Whatever interpretation you choose, you will certainly agree that some
real numbers are more clearly specified than others, and that to specify a
real number, you need to give some algorithm allowing you to determine
as many digits of the real number as would be possible (or reasonable) to
ask for.

18.10 Recipes and Good Food

Using the Bisection algorithm, we can compute any number of decimals of
V2 if we have enough computational power. Using an algorithm to specify
a number is analogous to using a recipe to specify for example Grandpa’s
Chocolate Cake. By following the recipe, we can bake a cake that is a more
or less accurate approximation of the ideal cake (which only Grandpa can
make) depending on our skill, energy, equipment and ingredients. There is
a clear difference between the recipe and cakes made from the recipe, since
after all we can eat a cake with pleasure but not a recipe. The recipe is like
an algorithm or scheme telling us how to proceed, how many eggs to use
for example, while cakes are the result of actually applying the algorithm
with real eggs.

Of course, there are people who seem to enjoy reading recipes, or even
just looking at pictures of food in magazines and talking about it. But if
they never actually do cook anything, their friends are likely to lose interest
in this activity. Similarly, you may enjoy looking at the symbols = or /2
and talking about them, or writing them on pieces of paper, but if you never
actually compute them, you may come to wonder what you are actually
doing.

In this book, we will see that there are many mathematical quantities
that can only be determined approximately using a computational algo-
rithm. Examples of such quantities are v/2, 7, and the base e of the natural
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logarithm. Later we will find that there are also functions, even elementary
functions like sin(z) and exp(z) that need to be computed for different
values of z. Just as we first need to bake a cake in order to enjoy it, we
may need to compute such ideal mathematical quantities using certain al-
gorithms before using them for other purposes.

18.11 The “New Math” in Elementary Education

After the defeat of formalists in the 1930s by the arguments of Godel, para-
doxically the formalist school took over and set theory got a new chance.
A wave generated by this development struck the elementary mathematics
education in the 1960s in the form of the “new math”. The idea was to
explain numbers using set theory, just as Russell and Whitehead had tried
to do 60 years earlier in their Principia. Thus a kid would learn that a set
consisting of one cow, two cups, a piece of chocolate and an orange, would
have five elements. The idea was to explain the nature of the number 5
this way rather than counting to five on the fingers or pick out 5 oranges
from a heap of oranges. This type of “new math” confused the kids, and
the parents and teachers even more, and was abandoned after some years
of turbulence.

18.12 The Search for Rigor in Mathematics

The formalists tried to give mathematics a rigorous basis. The search for
rigor was started by Cauchy and Weierstrass who tried to give precise def-
initions of the concepts of limit, derivative and integral, and was continued
by Cantor and Dedekind who tried to clarify the precise meaning of con-
cepts such as continuum, real number, the set of real numbers, and so on.
Eventually this effort of giving mathematics a fully rational basis collapsed,
as we have indicated above.
We may identify two types of rigor:

e constructive rigor
e formal rigor.

Constructive rigor is necessary to accomplish difficult tasks like carrying
out a heart operation, sending a man to the moon, building a tall suspension
bridge, climbing Mount Everest, or writing a long computer program that
works properly. In each case, every little detail may count and if the whole
enterprise is not characterized by extreme rigor, it will most likely fail.
Eventually this is a rigor that concerns material things, or real events.
Formal rigor is of a different nature and does not have a direct concrete
objective like the ones suggested above. Formal rigor may be exercised at a
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royal court or in diplomacy, for example. It is a rigor that concerns language
(words), or manners. The Scholastic philosophers during the Medieval time,
were formalists who loved formal rigor and could discuss through very com-
plicated arguments for example the question how many Angels could fit
onto the edge of a knife. Some people use a very educated formally correct
language which may be viewed as expressing a formal rigor. Authors pay
a lot of attention to the formalities of language, and may spend hour after
hour polishing on just one sentence until it gets just the right form. More
generally, formal aspects may be very important in Arts and Aesthetics.
Formal rigor may be thus very important, but serves a different purpose
than constructive rigor. Constructive rigor is there to guarantee that some-
thing will actually function as desired. Formal rigor may serve the purpose
of controlling people or impressing people, or just make people feel good,
or to carry out a diplomatic negotiation. Formal rigor may be exercised in
a game or play with certain very specific rules, that may be very strict, but
do not serve a direct practical purpose outside the game.

Also in mathematics, one may distinguish between concrete and formal
error. A computation, like multiplication of two natural numbers, is a con-
crete task and rigor simply means that the computation is carried out in
a correct way. This may be very important in economics or engineering. It
is not difficult to explain the usefulness of this type of constructive rigor,
and the student has no difficulty in formulating himself what the criteria
of constructive rigor might be in different contexts.

Formal rigor in calculus was promoted by Weierstrass with the objective
of making basic concepts and arguments like the continuum of real num-
bers or limit processes more “formally correct”. The idea of formal rigor is
still alive very much in mathematics education dominated by the formalist
school. Usually, students cannot understand the meaning of this type of
“formally rigorous reasoning”, and very seldom can exercise this type of
rigor without much direction from the teacher.

We shall follow an approach where we try to reach constructive rigor to
a degree which can be clearly motivated, and we shall seek to make the
concept of formal rigor somewhat understandable and explain some of its
virtues.

18.13 A Non-Constructive Proof

We now give an example of a proof with non-constructive aspects that
plays an important role in many Calculus books. Although because of the
non-constructive aspects, the proof is considered to be so difficult that it
can only by appreciated by selected math majors.

The setting is the following: We consider a bounded increasing sequence
{an}5° of real numbers, that is a, < an41 for n = 1,2, ..., and there is a
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constant C such that a,, < C forn = 1,2, .... The claim is that the sequence
{an}3° converges to a limit A. The proof goes as follows: all the numbers
ay, clearly belong to the interval I = [a1, C]. For simplicity suppose a; = 0
and C = 1. Divide now the interval [0, 1] into the two intervals [0, 1/2] and
[1/2,1]. and make the following choice: if there is a real number a,, such
that a,, € [1/2,1], then choose the right interval [1/2,1] and if not choose
the left interval [0,1/2]. Then repeat the subdivision into a left and a right
interval, choose one of the intervals following the same principle: if there is
a real number a,, in the right interval, then choose this interval, and if not
choose the left interval. We then get a nested sequence of intervals with
length tending to zero defining a unique real number that is easily seen to
be the limit of the sequence {a,}°. Are you convinced? If not, you must
be a constructivist.

So where is the hook of non-constructiveness in this proof? Of course,
it concerns the choice of interval: in order to choose the correct interval
you must be able to check if there is some a,, that belongs to the right
interval, that is you must check if a,, belongs to the right interval for all
sufficiently large n. The question from a constructivist point of view is if we
can perform each check in a finite number of steps. Well, this may depend on
the particular sequence a,, < a,+1 under consideration. Let’s first consider
a sequence which is so simple that we may say that we know everything
of interest: for example the sequence {a,}° with a, = 1 — 27", that is
the sequence 1/2,3/4,7/8,15/16,31/32, ..., which is a bounded increasing
sequence clearly converging to 1. For this sequence, we would be able to
always choose the correct interval (the right one) because of its simplicity.

We now consider the sequence {a,}$° with a, = Y7 7%, which is clearly
an increasing sequence, and one can also quite easily show that the se-
quence is bounded. In this case the choice of interval is much more tricky,
and it is not clear how to make the choice constructively without actually
constructing the limit. So there we stand, and we may question the value
of the non-constructive proof of existence of a limit, if we anyway have to
construct the limit. In any case we sum up in the following result:

Theorem 18.1 (non-constructive!) A bounded increasing sequence con-
verges.

18.14 Summary

The viewpoint of Plato was to say that ideal points and lines exist in some
Heaven above, while the points and lines which we as human beings can
deal with, are some more or less incomplete copies or shades or images
of the ideals. This is Plato’s idealistic approach, which is related to the
formalistic school. An intuitionist would say that we can never be sure of
the existence of the ideals, and that we should concentrate on the more
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or less incomplete copies we can construct ourselves as human beings. The
question of the actual existence of the ideals thus becomes a question of
metaphysics or religion, to which there probably is no definite answer. Fol-
lowing our own feelings, we may choose to be either a idealist/formalist or
an intuitionist/constructivist, or something in between.

The authors of this book have chosen such a middle way between the
constructivist and formalist schools, trying always to be as constructive as is
possible from a practical point of view, but often using a formalist language
for reasons of convenience. The constructive approach puts emphasis on the
concrete aspects of mathematics and brings it close to engineering and
“body”. This reduces the mystical character of mathematics and helps
understanding. On the other hand, mathematics is not equal to engineering
or only “body”, and also the less concrete aspects or “soul” are useful for
our thinking and in modeling the world around us. We thus seek a good
synthesis of constructive and formalistic mathematics, or a synthesis of
Body & Soul.

Going back to the start of our little discussion, we thus associate the
logicist and formalistic schools with the idealistic/aristocratic tradition and
the constructivists with the constructive/democratic tradition. As students,
we would probably appreciate a constructive/democratic approach, since it
aids the understanding and gives the student an active role. On the other
hand, certain things indeed are very difficult to understand or construct,
and then the idealistic/aristocratic approach opens a possible attitude to
handle this dilemma.

The constructivist approach, whenever feasible, is appealing from educa-
tional point of view, since it gives the student an active role. The student
is invited to construct himself, and not just watch an omnipotent teacher
pick ready-made examples from Heaven.

Of course, the development of the modern computer has meant a tremen-
dous boost of constructive mathematics, because what the computer does
is constructive. Mathematics education is still dominated by the formalist
school, and the most of the problems today afflicting mathematics educa-
tion can be related to the over-emphasis of the idealistic school in times
when constructive mathematics is dominating in applications.

Turing’s principle of a “universal computing machine” directly connects
the work on the foundations of mathematics in the 1930s (with Computable
numbers as a key article), with the development of the modern computer in
the 1940s (with ACE as a key example), and thus very concretely illustrates
the power of (constructive!) mathematics.
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Some distinguished mathematicians have recently advocated the more
or less complete banishment from mathematics of all non-constructive
proofs. Even if such a program were desirable, it would involve tremen-
dous complications and even the partial destruction of the body of

living mathematics. For this reason it is no wonder that the school of

“intuitionism”, which has adopted this program, has met with strong

resistance, and that even the most thoroughgoing intuitionists can-

not always live up to their convictions. (Courant)

The composition of vast books is a laborious and impoverishing
extravagance. To go on for five hundred pages developing an idea
whose perfect oral exposition is possible in a few minutes! A better
course of procedure is to pretend that these books already exist, and
then to offer a resume, a commentary...More reasonable, more inept,
more indolent, I have preferred to write notes upon imaginary books.
(Borges, 1941)

I have always imagined that Paradise will be kind of a library. (Borges)

My prize book at Sherbourne School (von Neumann’s Mathematische
Grundlagen der Quantenmechanik) is turning out very interesting,
and not at all difficult reading, although the applied mathematicians
seem to find it rather strong. (Turing, age 21)

FIGURE 18.8. View of the river Cam at Cambridge 2003 with ACE in the
fore-ground (and “UNTHINKABLE” in the background to the right)
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Appendix A

Comments on the Directives of the
Mathematics Delegation

We now return to the Mathematics Delegation and shortly comment on its

directives.

A.1 The Directives

The importance of good knowledge in mathematics is undeniable. This
covers a wide area from daily knowledge to creating the conditions for life-
long learning, as well as the acquisition of competence and problem solving
skills required for learning in other subjects, and for actively participating
in society and working life.

General skills such as logical thinking, the ability to abstract, analyse argu-
ments, communication and problem solving skills are all developed, applied
and trained within mathematics.

For this reason, it is natural that mathematics is one of the basic subjects
in the compulsory school, that the admissions requirement to the upper
secondary school is a Pass Grade, and that mathematics is a core subject
in the upper secondary school.

A knowledge of mathematics helps us to understand complex contexts, and
is a prerequisite not only for our joint welfare, but also the individual’s
opportunities to e.g. be able to examine and evaluate arguments in the
political debate on the use and distribution of our joint resources.

People with good knowledge in the natural sciences and technology are
of vital importance for Sweden to be able to continue to develop as a
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leading industrial nation using resources effectively and to promote sus-
tainable economic, social and ecological development. A good knowledge
of mathematics is also needed in many other areas in order to achieve
success. Mathematics and its applications contribute to development in a
large number of areas such as e.g. electronics, communication, economics,
biology and medicine, as well as the arts, music and film.

A.2 Comments

We now examine the above statements concerning form, content, and logic,
possibly using some of our analytical skills developed during our studies of
mathematics (and languages and other subjects).

General and Vague

The statements are general in nature, and no indication to what mathe-
matics is referred to: Mathematics in general? Calculus? Linear algebra?
Elementary arithmetic? Algebraic topology? And no indication at all is
given to the many important applications of computational mathematics
in our information society.

Problem Solving Skills

It is claimed that skills of “problem solving” are developed within math-
ematics education. Again within which parts of mathematics education:
General? Calculus? Any? And what types of problems?

Logical Thinking and the Ability to Abstract

It is claimed that “general skills such as logical thinking, the ability to
abstract and analyse arguments, are all developed, applied and trained
within mathematics”. It is not mentioned that such skills equally much,
or even more, are developed within studies in languages (in particular the
mother tongue) and in social and natural sciences.

The Undeniable Importance of Mathematics

It is stated that “The importance of good knowledge in mathematics is
undeniable”. Again the statement is very vague: what is “good knowl-
edge” and what mathematics is referred to? And of course, the use of the
phrase “undeniable” in an argument may be questioned. The only state-
ments which are undeniable are tautologies like “there are 100 centimeters
on a meter” or “one plus one is two”.
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Maybe a “good knowledge” of addition, subtraction and multiplication,
is sufficient? If this is true, how could we motivate students to go beyond
elementary arithmetics?

The Undeniable Importance of Latin

Similarly, one may argue from an “undeniable importance“ of language that
classical Latin and Greek should be reintroduced as a compulsory subject
from basic education and up. Or from the “undeniable success” of pop music
that the education in contemporary electronic music (appreciated by only
a very small part of the public), should be significantly strengthened.

Nothing About Computational Mathematics

A most remarkable feature of the directives is that nothing is mentioned
about the role and importance of computational mathematics today, in sci-
ence, medicine, engineering, economics and other areas, of which we present
evidence in this book. In particular no indication is given of the importance
of computational mathematics within studies in natural sciences and tech-
nology, viewed to be of “vital importance for Sweden to be able to continue
to develop as a leading industrial nation using resources effectively and to
promote sustainable economic, social and ecological development”. This is
truly very remarkable!

Distribution of Joint Resources

It is claimed that mathematics helps us to evaluate arguments for the
distribution of joint resources. Maybe so, but this issue in general has more
to do with political ideologies than mere counting.

How to be Successful?

It is stated that “A good knowledge of mathematics is also needed in many
other areas in order to achieve success such as communication, economics,
biology and medicine, as well as the arts, music and film”. Is this true?
Maybe in economics, but is it true in the arts, music and film? Which
mathematics is here useful to reach success? That $1 million plus $1 million
is $2 millions?

A.3 A Sum Up

The directives are surprisingly vague and sweeping and in fact appear to
reflect quite a bit of confusion (or is it a careful calculation?). It is easy to
get the impression that the directives are formulated so as to:
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e be politically correct (“sustainable economic, social and ecological
development”);

e suit traditional schools of mathematics by suggesting usefulness of
mathematics in general, but not giving any concretion concerning in
particular the role of computational mathematics today;

e suit traditional schools of mathematics didactics relieving them from
contacts with modern computational mathematics.

Of course, with such directives there is a high risk that also the report of
the delegation will come out as being vague and confused. Further, there is
a risk that such a report will be used to give a justification of status quo,
rather than as a tool for constructive change to the better.

We invite the reader to analyze the directives, and in particular present
possible reasons for the absence of computational mathematics. And of
course to read and analyze the report on www.matematikdelegationen.gov.se
when available.
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Preface to Body&Soul

The Need of Reform of Mathematics Education

Mathematics education needs to be reformed as we now pass into the new
millennium. We share this conviction with a rapidly increasing number of
researchers and teachers of both mathematics and topics of science and
engineering based on mathematical modeling. The reason is of course the
computer revolution, which has fundamentally changed the possibilities of
using mathematical and computational techniques for modeling, simula-
tion and control of real phenomena. New products and systems may be
developed and tested through computer simulation on time scales and at
costs which are orders of magnitude smaller than those using traditional
techniques based on extensive laboratory testing, hand calculations and
trial and error.

At the heart of the new simulation techniques lie the new fields of
Computational Mathematical Modeling (CMM), including Computational
Mechanics, Physics, Fluid Dynamics, Electromagnetics and Chemistry, all
based on solving systems of differential equations using computers, com-
bined with geometric modeling/Computer Aided Design (CAD). Compu-
tational modeling is also finding revolutionary new applications in biology,
medicine, environmental sciences, economy and financial markets.

Education in mathematics forms the basis of science and engineering
education from undergraduate to graduate level, because engineering and
science are largely based on mathematical modeling. The level and the
quality of mathematics education sets the level of the education as a whole.
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The new technology of CMM/CAD crosses borders between traditional
engineering disciplines and schools, and drives strong forces to modernize
engineering education in both content and form from basic to graduate
level.

Our Reform Program

Our own reform work started some 20 years ago in courses in CMM at
advanced undergraduate level, and has through the years successively pen-
etrated through the system to the basic education in calculus and linear
algebra. Our aim has become to develop a complete program for mathe-
matics education in science and engineering from basic undergraduate to
graduate education. As of now our program contains the series of books:

1. Computational Differential Equations, (CDE)
2. Applied Mathematics: Body & Soul I-I11I, (AM I-III)
3. Applied Mathematics: Body & Soul VI-, (AM IV-).

AM I-III is the present book in three volumes I-III covering the basics
of calculus and linear algebra. AM IV- offers a continuation with a series
of volumes dedicated to specific areas of applications such as Dynamical
Systems (IV), Fluid Mechanics (V), Solid Mechanics (VI) and Electromag-
netics (VII), which will start appearing in 2003. CDE published in 1996
may be be viewed as a first version of the whole Applied Mathematics: Body
& Soul project.

Our program also contains a variety of software (collected in the Math-
ematics Laboratory), and complementary material with step-by step in-
structions for self-study, problems with solutions, and projects, all freely
available on-line from the web site of the book. Our ambition is to offer a
“box” containing a set of books, software and additional instructional ma-
terial, which can serve as a basis for a full applied mathematics program
in science and engineering from basic to graduate level. Of course, we hope
this to be an on-going project with new material being added gradually.

We have been running an applied mathematics program based on AM
I-1II from first year for the students of chemical engineering at Chalmers
since the Fall 99, and we have used parts of the material from AM IV- in
advanced undergraduate/beginning graduate courses.

Main Features of the Program:

e The program is based on a synthesis of mathematics, computation
and application.
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The program is based on new literature, giving a new unified presen-
tation from the start based on constructive mathematical methods
including a computational methodology for differential equations.

The program contains, as an integrated part, software at different
levels of complexity.

The student acquires solid skills of implementing computational
methods and developing applications and software using MATLAB.

The synthesis of mathematics and computation opens mathematics
education to applications, and gives a basis for the effective use of
modern mathematical methods in mechanics, physics, chemistry and
applied subjects.

The synthesis building on constructive mathematics gives a synergetic
effect allowing the study of complex systems already in the basic ed-
ucation, including the basic models of mechanical systems, heat con-
duction, wave propagation, elasticity, fluid flow, electro-magnetism,
reaction-diffusion, molecular dynamics, as well as corresponding
multi-physics problems.

The program increases the motivation of the student by applying
mathematical methods to interesting and important concrete prob-
lems already from the start.

Emphasis may be put on problem solving, project work and presen-
tation.

The program gives theoretical and computational tools and builds
confidence.

The program contains most of the traditional material from basic
courses in analysis and linear algebra

The program includes much material often left out in traditional pro-
grams such as constructive proofs of all the basic theorems in analysis
and linear algebra and advanced topics such as nonlinear systems of
algebraic/differential equations.

Emphasis is put on giving the student a solid understanding of basic
mathematical concepts such as real numbers, Cauchy sequences, Lips-
chitz continuity, and constructive tools for solving algebraic/differential
equations, together with an ability to utilize these tools in advanced
applications such as molecular dynamics.

The program may be run at different levels of ambition concerning
both mathematical analysis and computation, while keeping a com-
mon basic core.
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AM I-1IT in Brief

Roughly speaking, AM I-III contains a synthesis of calculus and linear
algebra including computational methods and a variety of applications.
Emphasis is put on constructive/computational methods with the double
aim of making the mathematics both understandable and useful. Our am-
bition is to introduce the student early (from the perspective of traditional
education) to both advanced mathematical concepts (such as Lipschitz
continuity, Cauchy sequence, contraction mapping, initial-value problem
for systems of differential equations) and advanced applications such as
Lagrangian mechanics, n-body systems, population models, elasticity and
electrical circuits, with an approach based on constructive/computational
methods.

Thus the idea is that making the student comfortable with both advanced
mathematical concepts and modern computational techniques, will open a
wealth of possibilities of applying mathematics to problems of real interest.
This is in contrast to traditional education where the emphasis is usually
put on a set of analytical techniques within a conceptual framework of
more limited scope. For example: we already lead the student in the second
quarter to write (in MATLAB) his/her own solver for general systems of
ordinary differential equations based on mathematically sound principles
(high conceptual and computational level), while traditional education at
the same time often focuses on training the student to master a bag of
tricks for symbolic integration. We also teach the student some tricks to
that purpose, but our overall goal is different.

Constructive Mathematics: Body & Soul

In our work we have been led to the conviction that the constructive as-
pects of calculus and linear algebra need to be strengthened. Of course,
constructive and computational mathematics are closely related and the
development of the computer has boosted computational mathematics in
recent years. Mathematical modeling has two basic dual aspects: one sym-
bolic and the other constructive-numerical, which reflect the duality be-
tween the infinite and the finite, or the continuous and the discrete. The
two aspects have been closely intertwined throughout the development of
modern science from the development of calculus in the work of Euler, La-
grange, Laplace and Gauss into the work of von Neumann in our time. For
example, Laplace’s monumental Mécanique Céleste in five volumes presents
a symbolic calculus for a mathematical model of gravitation taking the form
of Laplace’s equation, together with massive numerical computations giv-
ing concrete information concerning the motion of the planets in our solar
system.
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However, beginning with the search for rigor in the foundations of cal-
culus in the 19th century, a split between the symbolic and constructive
aspects gradually developed. The split accelerated with the invention of the
electronic computer in the 1940s, after which the constructive aspects were
pursued in the new fields of numerical analysis and computing sciences,
primarily developed outside departments of mathematics. The unfortu-
nate result today is that symbolic mathematics and constructive-numerical
mathematics by and large are separate disciplines and are rarely taught
together. Typically, a student first meets calculus restricted to its symbolic
form and then much later, in a different context, is confronted with the
computational side. This state of affairs lacks a sound scientific motivation
and causes severe difficulties in courses in physics, mechanics and applied
sciences which build on mathematical modeling.

New possibilities are opened by creating from the start a synthesis of
constructive and symbolic mathematics representing a synthesis of Body
& Soul: with computational techniques available the students may become
familiar with nonlinear systems of differential equations already in early
calculus, with a wealth of applications. Another consequence is that the
basics of calculus, including concepts like real number, Cauchy sequence,
convergence, fixed point iteration, contraction mapping, is lifted out of
the wardrobe of mathematical obscurities into the real world with direct
practical importance. In one shot one can make mathematics education
both deeper and broader and lift it to a higher level. This idea underlies the
present book, which thus in the setting of a standard engineering program,
contains all the basic theorems of calculus including the proofs normally
taught only in special honors courses, together with advanced applications
such as systems of nonlinear differential equations. We have found that this
seemingly impossible program indeed works surprisingly well. Admittedly,
this is hard to believe without making real life experiments. We hope the
reader will feel encouraged to do so.

Proofs and Theorems

Most mathematics books including Calculus texts follow a theorem-proof
style, where first a theorem is presented and then a corresponding proof
is given. This is seldom appreciated very much by the students, who often
have difficulties with the role and nature of the proof concept.

We usually turn this around and first present a line of thought leading to
some result, and then we state a corresponding theorem as a summary of
the hypothesis and the main result obtained. We thus rather use a proof-
theorem format. We believe this is in fact often more natural than the
theorem-proof style, since by first presenting the line of thought the differ-
ent ingredients, like hypotheses, may be introduced in a logical order. The
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proof will then be just like any other line of thought, where one successively
derives consequences from some starting point using different hypothesis
as one goes along. We hope this will help to eliminate the often perceived
mystery of proofs, simply because the student will not be aware of the fact
that a proof is being presented; it will just be a logical line of thought, like
any logical line of thought in everyday life. Only when the line of thought
is finished, one may go back and call it a proof, and in a theorem collect
the main result arrived at, including the required hypotheses. As a conse-
quence, in the Latex version of the book we do use a theorem-environment,
but not any proof-environment; the proof is just a logical line of thought
preceding a theorem collecting the hypothesis and the main result.

The Mathematics Laboratory

We have developed various pieces of software to support our program into
what we refer to as the Mathematics Laboratory. Some of the software
serves the purpose of illustrating mathematical concepts such as roots of
equations, Lipschitz continuity, fixed point iteration, differentiability, the
definition of the integral and basic calculus for functions of several vari-
ables; other pieces are supposed to be used as models for the students own
computer realizations; finally some pieces are aimed at applications such as
solvers for differential equations. New pieces are being added continuously.
Our ambition is to also add different multi-media realizations of various
parts of the material.

In our program the students get a training from start in using MATLAB
as a tool for computation. The development of the constructive mathe-
matical aspects of the basic topics of real numbers, functions, equations,
derivatives and integrals, goes hand in hand with experience of solving
equations with fixed point iteration or Newton’s method, quadrature, and
numerical methods or differential equations. The students see from their
own experience that abstract symbolic concepts have roots deep down into
constructive computation, which also gives a direct coupling to applications
and physical reality.

Go to http://www.phi.chalmers.se/bodysoul/

The Applied Mathematics: Body & Soul project has a web site contain-
ing additional instructional material and the Mathematics Laboratory. We
hope that the web site for the student will be a good friend helping to
(independently) digest and progress through the material, and that for the
teacher it may offer inspiration. We also hope the web site may serve as
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a forum for exchange of ideas and experience related the project, and we
therefore invite both students and teachers to submit material.

My heart is sad and lonely
for you I sigh, dear, only
Why haven’t you seen it

I'm all for you body and soul
(Green, Body and Soul)






Appendix C
Public Debate

Get this (economic plan) passed. Later on, we can all debate it.
(President George Bush, to New Hampshire legislators)

There is some public debate on mathematics education in Sweden, and
probably also in other countries. There seems to be a common agreement
that there is a crisis in mathematics education today (although the chair-
man of the Mathematics Delegation does not believe there is). A com-
mon view among professional mathematicians teaching mathematics at a
university /college, is that the main manifestation of the the crisis is that
the students entering the university/college have an inadequate training in
mathematics from high-school. This represents a privilege of problem defini-
tion. This term was coined by the famous Swedish author Lars Gustafsson,
since many years active from a platform outside Sweden at the University
of Austin, during the Marxist heydays of 1968. It is clear that to have (or
take) this privilege gives an advantage in a debate. But of course, it is risky,
since if the privilege is lost, the debate may be lost as well.

The problem of mathematics education at the university/college, and
apparently there is a problem, is thus identified to be caused by a lack of
training in high-school; the students know too little mathematics when they
enter the university, which effectively prevents them from learning more.
This message has been delivered in several debate articles in the Swedish
press, usually signed by a group of university professors of mathematics.
We refer to this as the standard problem definition.

In several debate articles in the Swedish press, we have questioned the
standard problem definition, with arguments like those presented in this
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book. We have received quite a bit of positive response from many, but
none from the (many) professors behind the standard problem definition.
We present below our latest debate article (published on March 6 2004 in
Goteborgs-Posten GP, the second paper in Sweden with 600.000 copies/day),
where we put forward the idea that the lack of response from professional
mathematicians may come from a lack of training in computational mathe-
matics. Notably, there was no response to this article. Maybe Wittgenstein’s
famous “Whereof one cannot speak, thereof one must be silent.” describes
the situation.

Further, teachers at high-schools say nothing to defend themselves, be-
cause in the established hierarchy of science they cannot argue with uni-
versity professors. The situation is similar for the experts of mathematics
didactics in charge of the education of high-school teachers. The net result
is that the debate, in the sense of exchange of ideas and viewpoints, is
almost non-existent.

Our debate article reads as follows, with the head lines set by the news-

paper.

Old Fashioned View of Mathematics Behind Crisis

A recent debate article in GP signed by a group of university professors
sends yet another message that mathematics education is in a state of crisis.
The next day the article is followed up by a report from the mathematics
education at Chalmers where many students get bogged down. (What a
waste of human resources!).

The idea that mathematics education on all levels is in a state of crisis,
is widely spread and made Ostros form the Mathematics Delegation. Many
university professors claim that the root of the crisis at the university is
the inadequate training the students get in high school mathematics, as in
the debate article and the report.

A Deeper Reason?

But is there some deeper reason behind the crisis, so vividly witnessed by
so many? Could it be that the main problem is not so much the student,
but instead the professor? Could it be that the reason is that mathematics
as a religion with its priests is in a state of crisis, and that the congregation
therefore is loosing faith? What a heretical thought! It can’t be true, or can
it?

Yes, it can. Such things happen in science, and mathematics is a science.
New views replace older ones in changes of paradigm, or scientific revolu-
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tions, usually during extended periods of agony, according to the famous
Thomas Kuhn, who has carefully analyzed the phenomenon.

Such a scientific revolution is now going on in mathematics caused by
the new possibilities of mathematical computation the computer offers.
Our new Information Society with word, image and sound in digital form
is based on computational mathematics, which is the mathematics used by
the computer. The computer is changing mathematics as a science and as
a tool in our society.

Today we may speak of mathematics without computer, as presented in
the traditional mathematics education at Chalmers, with analytical formu-
las as the kernel (see the report), and mathematics with computer, which
is the new computational mathematics with algorithms for computation as
the kernel.

There is no sharp line between these areas: an algorithm is expressed
in analytical mathematical formulas, which are translated into computer
code, and good formulas may give understanding and insight. The mathe-
matics professors who signed the debate article and express their views in
the report all represent mathematics without computer, and seem to share
the view that the root of the crisis at the university is inadequate training
in high-school.

Modern Education

What would a modern mathematics education (mathematics with com-
puter) look like? Is there anything like that? Yes! We have developed a
reformed mathematics education, which is e.g. used for the students of
chemical engineering at Chalmers. We refer to our reform program as
Body&Soul, where Body represents computation and Soul mathematical
analysis. And indeed, the students of chemical engineering manage their
studies in mathematics quite well, despite the facts that our program has
a high level and mathematics is difficult. Many students are surprisingly
good, and very few fail completely.

We believe that we have shown a route to a both understandable and
useful modern education. We continue our work towards a reformed high-
school education, following the principle that the top brick in the building
of knowledge has to be put according to the current standpoint of science,
and the bricks below so as to give support.

Lack of Debate

One could now expect the debate about our program to be lively, if it could
contribute to resolve the crisis? But there is no debate. We know this from
making several attempts in GP and Dagens Nyheter, which have all been
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met with silence. We believe the reason may be that expert knowledge in
computational mathematics is required to constructively debate (the top
brick of a) modern mathematics education, and we don’t see this knowledge
among the professors behind the debate article and the report, neither
among all the members of the Mathematics Delegation. Maybe in this
context one could speak of inadequate training?

Who would be able to say that what we are saying is not correct? Who
would dare to say that what we are saying is maybe quite true?

Seek Answers

But the problem remains: How to come out of the crisis if you don’t want
to debate? If you don’t want to reform? If professional mathematicians
can’t agree on where mathematics as a science stands today. If you want to
focus on inadequate training in high-school only, and not scrutinize your
own role and the content and form of the education at the university? If
the Mathematics Delegation refuses to engage expertise of computational
mathematics and does not want to seek answers to questions of what and
why?

Kenneth Eriksson, Prof of Applied Mathematics, College of Trollhéttan,
Johan Hoffman, Post Doc, Courant Inst of Mathematical Sciences, NY,
Claes Johnson, Prof of Applied Mathematics, Chalmers,

Anders Logg, Ph D student, Computational Mathematics, Chalmers,
Nils Svanstedt, Prof of Mathematics, University of Géteborg.



